Mitigating chromate toxicity through concurrent denitrification in the H2-based membrane biofilm reactor

IF 12.2 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Min Long , Chen-Wei Zheng , Chen Zhou , Bruce E. Rittmann
{"title":"Mitigating chromate toxicity through concurrent denitrification in the H2-based membrane biofilm reactor","authors":"Min Long ,&nbsp;Chen-Wei Zheng ,&nbsp;Chen Zhou ,&nbsp;Bruce E. Rittmann","doi":"10.1016/j.jhazmat.2025.138073","DOIUrl":null,"url":null,"abstract":"<div><div>High concentrations of hexavalent chromium (Cr(VI)) in industrial wastewaters pose significant environmental and health hazards. Biotranformation is a viable means to lower Cr(VI) toxicity, but research to date has focused on wastewaters with low concentrations (e.g., 2–5 mg/L Cr(VI)). This study evaluated the dynamics of biosorption and biotransformation of higher-concentration Cr(VI) by biofilms in the H<sub>2</sub>-based membrane biofilm reactor (MBfR). While the biofilm in an MBfR receiving Cr(VI) alone had limited capacity to remove Cr(VI) and Cr(VI) removal ceased in 30 days, an autotrophic denitrifying biofilms achieved 99 % reduction of over 20 mg/L Cr(VI) to less-toxic trivalent chromium (Cr(III)) in continuous long-term operation system over 4 months. Increasing the H<sub>2</sub> pressure from 3 psig to 10 psig improved Cr(VI) removal from 87 % to 99 %, which occurred in parallel with over 95 % NO<sub>3</sub><sup>-</sup> reduction to N<sub>2</sub>. Metagenomic analyses revealed the mechanisms of Cr(VI) bioreduction and highlighted the beneficial role of nitrate (NO<sub>3</sub><sup>-</sup>) as the primary electron acceptor. For example, nitrite reductase <em>NrfA</em> could reduce Cr(VI), which lowered Cr(VI) caused oxidative stress. This research demonstrates the MBfR’s effectiveness in reducing elevated levels of Cr(VI) and provides mechanistic understanding of the roles of denitrification in accelerating Cr(VI) reduction and detoxification.</div></div>","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"492 ","pages":"Article 138073"},"PeriodicalIF":12.2000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304389425009884","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

High concentrations of hexavalent chromium (Cr(VI)) in industrial wastewaters pose significant environmental and health hazards. Biotranformation is a viable means to lower Cr(VI) toxicity, but research to date has focused on wastewaters with low concentrations (e.g., 2–5 mg/L Cr(VI)). This study evaluated the dynamics of biosorption and biotransformation of higher-concentration Cr(VI) by biofilms in the H2-based membrane biofilm reactor (MBfR). While the biofilm in an MBfR receiving Cr(VI) alone had limited capacity to remove Cr(VI) and Cr(VI) removal ceased in 30 days, an autotrophic denitrifying biofilms achieved 99 % reduction of over 20 mg/L Cr(VI) to less-toxic trivalent chromium (Cr(III)) in continuous long-term operation system over 4 months. Increasing the H2 pressure from 3 psig to 10 psig improved Cr(VI) removal from 87 % to 99 %, which occurred in parallel with over 95 % NO3- reduction to N2. Metagenomic analyses revealed the mechanisms of Cr(VI) bioreduction and highlighted the beneficial role of nitrate (NO3-) as the primary electron acceptor. For example, nitrite reductase NrfA could reduce Cr(VI), which lowered Cr(VI) caused oxidative stress. This research demonstrates the MBfR’s effectiveness in reducing elevated levels of Cr(VI) and provides mechanistic understanding of the roles of denitrification in accelerating Cr(VI) reduction and detoxification.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Hazardous Materials
Journal of Hazardous Materials 工程技术-工程:环境
CiteScore
25.40
自引率
5.90%
发文量
3059
审稿时长
58 days
期刊介绍: The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信