Non-Carbonized Pd Single-Atom Catalyst Supported on Lignin-Functionalized Phenolic Resin for Potent Catalytic Transfer Hydrogenation of Lignin-Derived Aldehydes

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tairan Pang, Zhenglong Xue, Guanhua Wang, Li Junkai, Wenjie Sui, Chuanling Si
{"title":"Non-Carbonized Pd Single-Atom Catalyst Supported on Lignin-Functionalized Phenolic Resin for Potent Catalytic Transfer Hydrogenation of Lignin-Derived Aldehydes","authors":"Tairan Pang, Zhenglong Xue, Guanhua Wang, Li Junkai, Wenjie Sui, Chuanling Si","doi":"10.1002/anie.202503195","DOIUrl":null,"url":null,"abstract":"Single-atom catalysts (SACs) are highly dependent on the properties of their supports, and organic polymers have recently emerged as promising candidates due to their tunable physicochemical properties and diverse functional groups. However, the high-temperature carbonization commonly required for conventional organic polymer-supported SAC fabrication often leads to the loss of these functional groups, thus weakening metal-support interactions and catalytic performance accordingly. Herein, we report a sustainable strategy to synthesize nitrogen-functionalized lignin-based phenolic resin (N-LPR) supports for stabilizing atomically dispersed Pd without carbonization. Using NH3·H2O as both the nitrogen source and catalyst, high molecular weight lignin fractions (L3) were transformed into N-L3PR-50% supports with a unique nano-chain-like structure, high surface area, and abundant amine groups, which can directly anchor Pd sites under room temperature. The resulting Pd@N-L3PR-50% catalyst achieved approximately 100% vanillin conversion and 97.91% selectivity for 2-methoxy-4-methylphenol at 80°C with excellent cycle stability and adaptability to lignin-derived aldehydes, benefiting from the stable Pd-N coordination and the good adsorption capacity provided by the N-L3PR-50% support. Consequently, this work not only demonstrates a straightforward non-carbonation strategy to prepare lignin-based SACs for potent biomass-derived chemical transformations but also provides a novel avenue for the application of conventional multifunctional organic polymers as support for SACs.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"16 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202503195","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Single-atom catalysts (SACs) are highly dependent on the properties of their supports, and organic polymers have recently emerged as promising candidates due to their tunable physicochemical properties and diverse functional groups. However, the high-temperature carbonization commonly required for conventional organic polymer-supported SAC fabrication often leads to the loss of these functional groups, thus weakening metal-support interactions and catalytic performance accordingly. Herein, we report a sustainable strategy to synthesize nitrogen-functionalized lignin-based phenolic resin (N-LPR) supports for stabilizing atomically dispersed Pd without carbonization. Using NH3·H2O as both the nitrogen source and catalyst, high molecular weight lignin fractions (L3) were transformed into N-L3PR-50% supports with a unique nano-chain-like structure, high surface area, and abundant amine groups, which can directly anchor Pd sites under room temperature. The resulting Pd@N-L3PR-50% catalyst achieved approximately 100% vanillin conversion and 97.91% selectivity for 2-methoxy-4-methylphenol at 80°C with excellent cycle stability and adaptability to lignin-derived aldehydes, benefiting from the stable Pd-N coordination and the good adsorption capacity provided by the N-L3PR-50% support. Consequently, this work not only demonstrates a straightforward non-carbonation strategy to prepare lignin-based SACs for potent biomass-derived chemical transformations but also provides a novel avenue for the application of conventional multifunctional organic polymers as support for SACs.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信