{"title":"Innovative Approach to Recycle Lithium-Ion Battery Electrolytes via Sequential Chemical Processes","authors":"Ting-Wei Hsu, Albert Lipson, Zhengcheng Zhang","doi":"10.1002/aenm.202500655","DOIUrl":null,"url":null,"abstract":"The rapid growth of electric vehicles (EV) has driven the widespread use of lithium-ion batteries (LIBs). This will result in a large amount of spent batteries that if not properly disposed will pose significant environmental damage, especially from the electrolyte. The electrolyte contains lithium hexafluorophosphate (LiPF<sub>6</sub>), which when treated by either incineration or water washing can generate harmful F- and P-containing substances such as hydrofluoric acid (HF). In this study, an innovative two-step process is presented to separate and purify both the solvents and lithium salts from the spent electrolyte. Antisolvent assisted precipitation is used to selectively isolate LiPF<sub>6</sub> salt in the form of a complex with ethylene carbonate. Subsequent distillation then separates the volatile electrolyte solvents and antisolvent from each other effectively. In addition, a new process to further purify LiPF<sub>6</sub> from its ethylene carbonate (EC) complex is also presented. This electrolyte recycling method not only enables the recovery of the high-value LiPF<sub>6</sub> salt and the electrolyte solvents, but also paves the way for environmentally responsible and circular LIB recycling.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"30 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202500655","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid growth of electric vehicles (EV) has driven the widespread use of lithium-ion batteries (LIBs). This will result in a large amount of spent batteries that if not properly disposed will pose significant environmental damage, especially from the electrolyte. The electrolyte contains lithium hexafluorophosphate (LiPF6), which when treated by either incineration or water washing can generate harmful F- and P-containing substances such as hydrofluoric acid (HF). In this study, an innovative two-step process is presented to separate and purify both the solvents and lithium salts from the spent electrolyte. Antisolvent assisted precipitation is used to selectively isolate LiPF6 salt in the form of a complex with ethylene carbonate. Subsequent distillation then separates the volatile electrolyte solvents and antisolvent from each other effectively. In addition, a new process to further purify LiPF6 from its ethylene carbonate (EC) complex is also presented. This electrolyte recycling method not only enables the recovery of the high-value LiPF6 salt and the electrolyte solvents, but also paves the way for environmentally responsible and circular LIB recycling.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.