Dynamic evolution of cathode-electrolyte interphase in lithium metal batteries with ether electrolytes

IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Joule Pub Date : 2025-03-27 DOI:10.1016/j.joule.2025.101885
Yawei Chen, Menghao Li, Yulin Jie, Yue Liu, Zhengfeng Zhang, Peiping Yu, Wanxia Li, Yang Liu, Xinpeng Li, Zhanwu Lei, Pengfei Yan, Tao Cheng, M. Danny Gu, Shuhong Jiao, Ruiguo Cao
{"title":"Dynamic evolution of cathode-electrolyte interphase in lithium metal batteries with ether electrolytes","authors":"Yawei Chen, Menghao Li, Yulin Jie, Yue Liu, Zhengfeng Zhang, Peiping Yu, Wanxia Li, Yang Liu, Xinpeng Li, Zhanwu Lei, Pengfei Yan, Tao Cheng, M. Danny Gu, Shuhong Jiao, Ruiguo Cao","doi":"10.1016/j.joule.2025.101885","DOIUrl":null,"url":null,"abstract":"High-voltage lithium (Li) metal batteries (HVLMBs) have attracted tremendous research interest in the past decade owing to their high energy densities. Electrode-electrolyte interphases in HVLMBs play critical roles in dictating their electrochemical performance. However, despite the intensive research on solid-electrolyte interphase (SEI) of Li anode, the cathode-electrolyte interphase (CEI) on high-voltage cathodes remains elusive. Herein, we report the formation and dynamic evolution of CEI on LiNi<sub>0.8</sub>Mn<sub>0.1</sub>Co<sub>0.1</sub>O<sub>2</sub> (NMC811) cathodes in ether-based electrolytes. We reveal that the solvent-derived interphase predominates the initial CEI, which subsequently evolves into a Li fluoride (LiF)-rich CEI during cycling. Through solvent design, the weak-solvation electrolyte with branched ether solvents promotes the formation of a conformal CEI layer featuring the monodispersing LiF nanocrystals (∼8 nm), thereby enabling NMC811 cathodes to sustain up to 2,000 cycles. This work addresses the long-standing questions regarding CEI evolution and provides valuable guidance for the rational electrolyte design for HVLMBs.","PeriodicalId":343,"journal":{"name":"Joule","volume":"133 1","pages":""},"PeriodicalIF":38.6000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.joule.2025.101885","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

High-voltage lithium (Li) metal batteries (HVLMBs) have attracted tremendous research interest in the past decade owing to their high energy densities. Electrode-electrolyte interphases in HVLMBs play critical roles in dictating their electrochemical performance. However, despite the intensive research on solid-electrolyte interphase (SEI) of Li anode, the cathode-electrolyte interphase (CEI) on high-voltage cathodes remains elusive. Herein, we report the formation and dynamic evolution of CEI on LiNi0.8Mn0.1Co0.1O2 (NMC811) cathodes in ether-based electrolytes. We reveal that the solvent-derived interphase predominates the initial CEI, which subsequently evolves into a Li fluoride (LiF)-rich CEI during cycling. Through solvent design, the weak-solvation electrolyte with branched ether solvents promotes the formation of a conformal CEI layer featuring the monodispersing LiF nanocrystals (∼8 nm), thereby enabling NMC811 cathodes to sustain up to 2,000 cycles. This work addresses the long-standing questions regarding CEI evolution and provides valuable guidance for the rational electrolyte design for HVLMBs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Joule
Joule Energy-General Energy
CiteScore
53.10
自引率
2.00%
发文量
198
期刊介绍: Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信