John R. Rizzo, Prem Kumar Begari, Deepak Kalita, Jiancai Gu, Scott A. Frank, Nour Eddine Fahmi, Hem Raj Khatri
{"title":"Novel Baeyer–Villiger Oxidation of Nucleosides Applied to the Large-Scale Synthesis of MeMOP: A Key Amidite in the GalXC Platform","authors":"John R. Rizzo, Prem Kumar Begari, Deepak Kalita, Jiancai Gu, Scott A. Frank, Nour Eddine Fahmi, Hem Raj Khatri","doi":"10.1021/acs.oprd.5c00021","DOIUrl":null,"url":null,"abstract":"The Baeyer–Villiger reaction is an established oxidative process that is applied for structural and functional group modification. We have applied the Baeyer–Villiger process to prepare 4′-oxo nucleosides. The application of Baeyer–Villiger oxidation to prepare MeMOP, a complex amidite used in the reported GalXC platform, will be discussed. A large-scale process to prepare MeMOP with an improved economic and operational safety risk profile will be highlighted. This novel application of the Baeyer–Villiger reaction to nucleoside platforms was used to scale up the MeMOP phosphoramidite process, which supported multiple clinical trials enabling siRNA campaigns.","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"50 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Process Research & Development","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.oprd.5c00021","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The Baeyer–Villiger reaction is an established oxidative process that is applied for structural and functional group modification. We have applied the Baeyer–Villiger process to prepare 4′-oxo nucleosides. The application of Baeyer–Villiger oxidation to prepare MeMOP, a complex amidite used in the reported GalXC platform, will be discussed. A large-scale process to prepare MeMOP with an improved economic and operational safety risk profile will be highlighted. This novel application of the Baeyer–Villiger reaction to nucleoside platforms was used to scale up the MeMOP phosphoramidite process, which supported multiple clinical trials enabling siRNA campaigns.
期刊介绍:
The journal Organic Process Research & Development serves as a communication tool between industrial chemists and chemists working in universities and research institutes. As such, it reports original work from the broad field of industrial process chemistry but also presents academic results that are relevant, or potentially relevant, to industrial applications. Process chemistry is the science that enables the safe, environmentally benign and ultimately economical manufacturing of organic compounds that are required in larger amounts to help address the needs of society. Consequently, the Journal encompasses every aspect of organic chemistry, including all aspects of catalysis, synthetic methodology development and synthetic strategy exploration, but also includes aspects from analytical and solid-state chemistry and chemical engineering, such as work-up tools,process safety, or flow-chemistry. The goal of development and optimization of chemical reactions and processes is their transfer to a larger scale; original work describing such studies and the actual implementation on scale is highly relevant to the journal. However, studies on new developments from either industry, research institutes or academia that have not yet been demonstrated on scale, but where an industrial utility can be expected and where the study has addressed important prerequisites for a scale-up and has given confidence into the reliability and practicality of the chemistry, also serve the mission of OPR&D as a communication tool between the different contributors to the field.