Kiran Matcha, William M. Maton, Peter Reniers, Robert Geertman, Bart Bueken, Philip Pye, Stijn Wuyts, Ed Cleator
{"title":"Development of a Convergent and Scalable Synthetic Route to Long-Acting RSV Inhibitor JNJ-7950","authors":"Kiran Matcha, William M. Maton, Peter Reniers, Robert Geertman, Bart Bueken, Philip Pye, Stijn Wuyts, Ed Cleator","doi":"10.1021/acs.oprd.4c00437","DOIUrl":null,"url":null,"abstract":"JNJ-7950 is a potent small-molecule respiratory syncytial virus (RSV) inhibitor with a long-acting profile in preclinical species. The design and development of a convergent synthetic route accelerated the discovery and development of JNJ-7950. First, the new synthetic route supported the lead candidate (JNJ-7950) selection process and later was adapted to provide a large-scale clinical batch. A shorter and cost-effective synthetic route to the key spiro-azetidine moiety exploited an intramolecular copper-catalyzed C–N coupling. The development of an efficient and sustainable process for telescoping three steps in a single solvent provided the benzimidazole moiety with an 85% overall yield. The spiro-azetidine and the benzimidazole moieties were coupled to provide JNJ-7950 in 48% overall yield with excellent purity over the six longest linear steps. Two GMP batches (6 and 12 kg) of JNJ-7950 were manufactured in parenteral grade quality to support long-acting injectable formulation development and early clinical need.","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"183 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Process Research & Development","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.oprd.4c00437","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
JNJ-7950 is a potent small-molecule respiratory syncytial virus (RSV) inhibitor with a long-acting profile in preclinical species. The design and development of a convergent synthetic route accelerated the discovery and development of JNJ-7950. First, the new synthetic route supported the lead candidate (JNJ-7950) selection process and later was adapted to provide a large-scale clinical batch. A shorter and cost-effective synthetic route to the key spiro-azetidine moiety exploited an intramolecular copper-catalyzed C–N coupling. The development of an efficient and sustainable process for telescoping three steps in a single solvent provided the benzimidazole moiety with an 85% overall yield. The spiro-azetidine and the benzimidazole moieties were coupled to provide JNJ-7950 in 48% overall yield with excellent purity over the six longest linear steps. Two GMP batches (6 and 12 kg) of JNJ-7950 were manufactured in parenteral grade quality to support long-acting injectable formulation development and early clinical need.
期刊介绍:
The journal Organic Process Research & Development serves as a communication tool between industrial chemists and chemists working in universities and research institutes. As such, it reports original work from the broad field of industrial process chemistry but also presents academic results that are relevant, or potentially relevant, to industrial applications. Process chemistry is the science that enables the safe, environmentally benign and ultimately economical manufacturing of organic compounds that are required in larger amounts to help address the needs of society. Consequently, the Journal encompasses every aspect of organic chemistry, including all aspects of catalysis, synthetic methodology development and synthetic strategy exploration, but also includes aspects from analytical and solid-state chemistry and chemical engineering, such as work-up tools,process safety, or flow-chemistry. The goal of development and optimization of chemical reactions and processes is their transfer to a larger scale; original work describing such studies and the actual implementation on scale is highly relevant to the journal. However, studies on new developments from either industry, research institutes or academia that have not yet been demonstrated on scale, but where an industrial utility can be expected and where the study has addressed important prerequisites for a scale-up and has given confidence into the reliability and practicality of the chemistry, also serve the mission of OPR&D as a communication tool between the different contributors to the field.