{"title":"Halogen atom-induced local asymmetric electron in covalent organic frameworks boosts photosynthesis of hydrogen peroxide from water and air","authors":"Youxing Liu, Yaru Guo, Nadaraj Sathishkumar, Minghui Liu, Lu Li, Zhiyuan Sang, Rongjuan Feng, Zongqiang Sun, Chenglong Sun, Mingchuan Luo, Xuliang Deng, Gang Lu, Shaojun Guo","doi":"10.1016/j.matt.2025.102076","DOIUrl":null,"url":null,"abstract":"The solar-to-chemical conversion (SCC) efficiency of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) photosynthesis is governed by the O<sub>2</sub> adsorption model and energy level, which are experimentally challenging to be tuned. Herein, we report a new strategy for tuning of the O<sub>2</sub> adsorption and electron potential energy level of covalent organic frameworks (COFs) using halogen atom (F, Cl, Br, and I) as a regulatory reagent, and demonstrate that I-COFs exhibit the maximum thermodynamic driving force for 2e<sup>–</sup> oxygen reduction reaction (ORR). The introduction of I atom inhibits the O–O bond breakage for enhancing the selectivity of 2e<sup>–</sup> ORR from 56.5% to 87.0%, thus promoting the continuous natural sunlight-driven photosynthesis of H<sub>2</sub>O<sub>2</sub> directly from water and air, showing a high SCC efficiency of 1.88% and the operational stability of over 200 h. Meanwhile, I-COFs also show 100% antibacterial performance and efficient wound healing ability, which is significantly better than that of H-COFs with symmetric electron distribution.","PeriodicalId":388,"journal":{"name":"Matter","volume":"57 1","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.matt.2025.102076","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The solar-to-chemical conversion (SCC) efficiency of hydrogen peroxide (H2O2) photosynthesis is governed by the O2 adsorption model and energy level, which are experimentally challenging to be tuned. Herein, we report a new strategy for tuning of the O2 adsorption and electron potential energy level of covalent organic frameworks (COFs) using halogen atom (F, Cl, Br, and I) as a regulatory reagent, and demonstrate that I-COFs exhibit the maximum thermodynamic driving force for 2e– oxygen reduction reaction (ORR). The introduction of I atom inhibits the O–O bond breakage for enhancing the selectivity of 2e– ORR from 56.5% to 87.0%, thus promoting the continuous natural sunlight-driven photosynthesis of H2O2 directly from water and air, showing a high SCC efficiency of 1.88% and the operational stability of over 200 h. Meanwhile, I-COFs also show 100% antibacterial performance and efficient wound healing ability, which is significantly better than that of H-COFs with symmetric electron distribution.
期刊介绍:
Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content.
Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.