Rose Jordan, Sam Kler, Iván Maisuls, Niklas Klosterhalfen, Benjamin Dietzek-Ivanšić, Cristian A. Strassert, Axel Klein
{"title":"Synthesis and Photophysics of the Doubly Cyclometalated Pd(II) Complexes [Pd(C∧N∧C)(L)], L = PPh3, AsPh3, and SbPh3","authors":"Rose Jordan, Sam Kler, Iván Maisuls, Niklas Klosterhalfen, Benjamin Dietzek-Ivanšić, Cristian A. Strassert, Axel Klein","doi":"10.1021/acs.inorgchem.4c05436","DOIUrl":null,"url":null,"abstract":"While Pt(II) complexes containing doubly cyclometalated ligands as tridentate luminophores are well studied, the synthetic accessibility of their Pd(II) counterparts was lacking for a long time. Inspired by a recent report on the synthesis of [Pd(dpp)(PPh<sub>3</sub>)] involving the C<sup>∧</sup>N<sup>∧</sup>C coordination mode (with dpp<sup>2–</sup> = 2,6-di(phenid-2-yl)pyridine) and following our own work on closely related Pt(II)-based compounds, we produced the series of complexes [Pd(dpp)(PnPh<sub>3</sub>)] (Pn = P, As, Sb) by optimizing the synthetic procedure and exploring their reactivity in the process. Our study of the electrochemical (cyclic voltammetry) and photophysical (UV–vis absorption and emission, transient absorption (TA) spectroscopy) properties of the Pd(C<sup>∧</sup>N<sup>∧</sup>C) complexes represents the first report on their characterization. We observed UV–vis absorption bands down to 450 nm and electrochemical HOMO–LUMO gaps around 3.2 V, which show minimal variation with different PnPh<sub>3</sub> coligands. A more pronounced influence of the coligand was observed in time-resolved emission and TA spectroscopy. The highest photoluminescence quantum yield (Φ<sub>L</sub>) in the series was found for [Pd(dpp)(AsPh<sub>3</sub>)], reaching 0.06. The interpretation of the spectroscopic data is supported by (TD-)DFT calculations. Additionally, we report structural and spectroscopic data for several dinuclear Pd(II) complexes, including the precursor {[Pd(dppH)(μ-Cl)]}<sub>2</sub> and multiple decomposition products of the sensitive compounds [Pd(dpp)(PnPh<sub>3</sub>)].","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":"125 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.inorgchem.4c05436","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
While Pt(II) complexes containing doubly cyclometalated ligands as tridentate luminophores are well studied, the synthetic accessibility of their Pd(II) counterparts was lacking for a long time. Inspired by a recent report on the synthesis of [Pd(dpp)(PPh3)] involving the C∧N∧C coordination mode (with dpp2– = 2,6-di(phenid-2-yl)pyridine) and following our own work on closely related Pt(II)-based compounds, we produced the series of complexes [Pd(dpp)(PnPh3)] (Pn = P, As, Sb) by optimizing the synthetic procedure and exploring their reactivity in the process. Our study of the electrochemical (cyclic voltammetry) and photophysical (UV–vis absorption and emission, transient absorption (TA) spectroscopy) properties of the Pd(C∧N∧C) complexes represents the first report on their characterization. We observed UV–vis absorption bands down to 450 nm and electrochemical HOMO–LUMO gaps around 3.2 V, which show minimal variation with different PnPh3 coligands. A more pronounced influence of the coligand was observed in time-resolved emission and TA spectroscopy. The highest photoluminescence quantum yield (ΦL) in the series was found for [Pd(dpp)(AsPh3)], reaching 0.06. The interpretation of the spectroscopic data is supported by (TD-)DFT calculations. Additionally, we report structural and spectroscopic data for several dinuclear Pd(II) complexes, including the precursor {[Pd(dppH)(μ-Cl)]}2 and multiple decomposition products of the sensitive compounds [Pd(dpp)(PnPh3)].
期刊介绍:
Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.