Highly efficient Agrobacterium rhizogenes-mediated gene editing system in Salvia miltiorrhiza inbred line bh2-7

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Mei Tian, Linglong Luo, Baolong Jin, Jianing Liu, Tong Chen, Jinfu Tang, Ye Shen, Haiyan Zhang, Juan Guo, Huawei Zhang, Guanghong Cui, Luqi Huang
{"title":"Highly efficient Agrobacterium rhizogenes-mediated gene editing system in Salvia miltiorrhiza inbred line bh2-7","authors":"Mei Tian, Linglong Luo, Baolong Jin, Jianing Liu, Tong Chen, Jinfu Tang, Ye Shen, Haiyan Zhang, Juan Guo, Huawei Zhang, Guanghong Cui, Luqi Huang","doi":"10.1111/pbi.70029","DOIUrl":null,"url":null,"abstract":"The CRISPR/Cas9 system is a powerful tool for genomic editing with significant potential for gene function validation and molecular breeding in medicinal plants. <i>Salvia miltiorrhiza</i>, a model medicinal plant, was among the pioneers to utilize CRISPR/Cas9 technology, though achieving high-efficiency homozygous knockout mutants has been challenging. In this study, the analysis of variations at 241 single-guide RNA (sgRNA) across different reference genomes and experimental materials was conducted first, leading to the identification of the six-generation inbred line bh2-7 as the most suitable reference genome and experimental material for gene editing research in <i>S. miltiorrhiza</i>. Next, five <i>Agrobacterium rhizogenes</i> strains were evaluated for hairy root induction, editing efficiency, and mutation patterns, with C58C1 and K599 emerging as the most effective delivery systems. Using the CRISPR/Cas9 vector pZKD672, 53 target sites were successfully edited, with K599 achieving 71.07% editing efficiency and 36.74% homozygous or biallelic (HOM) efficiency and C58C1 showing 62.27% editing efficiency and 23.61% HOM efficiency. We thus constructed a large-scale mutant library targeting 121 genes with 170 sgRNAs, yielding 1664 homozygous or biallelic mutants. Analysis of 65 low-efficiency target sites revealed that sgRNA mismatches and secondary structures were key factors reducing HOM efficiency, offering insights for future target design. This study establishes an efficient CRISPR/Cas9 system, advancing precision breeding and metabolic engineering research in medicinal plants.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"23 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/pbi.70029","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The CRISPR/Cas9 system is a powerful tool for genomic editing with significant potential for gene function validation and molecular breeding in medicinal plants. Salvia miltiorrhiza, a model medicinal plant, was among the pioneers to utilize CRISPR/Cas9 technology, though achieving high-efficiency homozygous knockout mutants has been challenging. In this study, the analysis of variations at 241 single-guide RNA (sgRNA) across different reference genomes and experimental materials was conducted first, leading to the identification of the six-generation inbred line bh2-7 as the most suitable reference genome and experimental material for gene editing research in S. miltiorrhiza. Next, five Agrobacterium rhizogenes strains were evaluated for hairy root induction, editing efficiency, and mutation patterns, with C58C1 and K599 emerging as the most effective delivery systems. Using the CRISPR/Cas9 vector pZKD672, 53 target sites were successfully edited, with K599 achieving 71.07% editing efficiency and 36.74% homozygous or biallelic (HOM) efficiency and C58C1 showing 62.27% editing efficiency and 23.61% HOM efficiency. We thus constructed a large-scale mutant library targeting 121 genes with 170 sgRNAs, yielding 1664 homozygous or biallelic mutants. Analysis of 65 low-efficiency target sites revealed that sgRNA mismatches and secondary structures were key factors reducing HOM efficiency, offering insights for future target design. This study establishes an efficient CRISPR/Cas9 system, advancing precision breeding and metabolic engineering research in medicinal plants.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Biotechnology Journal
Plant Biotechnology Journal 生物-生物工程与应用微生物
CiteScore
20.50
自引率
2.90%
发文量
201
审稿时长
1 months
期刊介绍: Plant Biotechnology Journal aspires to publish original research and insightful reviews of high impact, authored by prominent researchers in applied plant science. The journal places a special emphasis on molecular plant sciences and their practical applications through plant biotechnology. Our goal is to establish a platform for showcasing significant advances in the field, encompassing curiosity-driven studies with potential applications, strategic research in plant biotechnology, scientific analysis of crucial issues for the beneficial utilization of plant sciences, and assessments of the performance of plant biotechnology products in practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信