Conventional versus singlet-triplet Kondo effect in Blatter radical molecular junctions: Zero-bias anomalies and magnetoresistance

IF 19.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chem Pub Date : 2025-03-27 DOI:10.1016/j.chempr.2025.102500
Gautam Mitra, Jueting Zheng, Karen Schaefer, Michael Deffner, Jonathan Z. Low, Luis M. Campos, Carmen Herrmann, Theo A. Costi, Elke Scheer
{"title":"Conventional versus singlet-triplet Kondo effect in Blatter radical molecular junctions: Zero-bias anomalies and magnetoresistance","authors":"Gautam Mitra, Jueting Zheng, Karen Schaefer, Michael Deffner, Jonathan Z. Low, Luis M. Campos, Carmen Herrmann, Theo A. Costi, Elke Scheer","doi":"10.1016/j.chempr.2025.102500","DOIUrl":null,"url":null,"abstract":"The Blatter radical has been suggested as a building block in future molecular spintronic devices because of its radical character and expected long spin lifetime. However, whether its radical character is maintained in single-molecule junctions depends on the environment. Here, we demonstrate the ability to retain the open-shell nature of the Blatter radical in a two-terminal device by the appearance of a Kondo resonance in transport spectroscopy. Additionally, a high negative magnetoresistance is observed in junctions that do not reveal a zero-bias anomaly. By combining distance-dependent and magnetic-field-dependent measurements and accompanying quantum-chemical and quantum-transport calculations, we show that both findings, the negative magnetoresistance and the Kondo features, can be consistently explained by a singlet-triplet Kondo model. Our findings provide the possibility of using the Blatter radical in a two-terminal system under cryogenic conditions and also reveal the magnetotransport properties emerging from different configurations of the molecule inside a junction.","PeriodicalId":268,"journal":{"name":"Chem","volume":"183 1","pages":""},"PeriodicalIF":19.1000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.chempr.2025.102500","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The Blatter radical has been suggested as a building block in future molecular spintronic devices because of its radical character and expected long spin lifetime. However, whether its radical character is maintained in single-molecule junctions depends on the environment. Here, we demonstrate the ability to retain the open-shell nature of the Blatter radical in a two-terminal device by the appearance of a Kondo resonance in transport spectroscopy. Additionally, a high negative magnetoresistance is observed in junctions that do not reveal a zero-bias anomaly. By combining distance-dependent and magnetic-field-dependent measurements and accompanying quantum-chemical and quantum-transport calculations, we show that both findings, the negative magnetoresistance and the Kondo features, can be consistently explained by a singlet-triplet Kondo model. Our findings provide the possibility of using the Blatter radical in a two-terminal system under cryogenic conditions and also reveal the magnetotransport properties emerging from different configurations of the molecule inside a junction.

Abstract Image

布拉特自由基分子结中的常规与单重态-三重态近藤效应:零偏置异常和磁电阻
由于布拉特基的自由基特性和预期的长自旋寿命,它被认为是未来分子自旋电子器件的基石。然而,在单分子连接处是否维持其自由基特性取决于环境。在这里,我们通过传输光谱中近藤共振的出现,证明了在双端装置中保持布拉特基开壳性质的能力。此外,在不显示零偏置异常的结中观察到高负磁电阻。通过结合距离相关和磁场相关的测量以及伴随的量子化学和量子输运计算,我们表明这两个发现,负磁电阻和近藤特征,可以用单线态-三重态近藤模型一致地解释。我们的发现提供了在低温条件下在双端系统中使用布拉特自由基的可能性,并揭示了结内分子不同构型产生的磁输运性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chem
Chem Environmental Science-Environmental Chemistry
CiteScore
32.40
自引率
1.30%
发文量
281
期刊介绍: Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信