Revealing the Coordination and Mediation Mechanism of Arylboronic Acids Toward Energy-Dense Li-S Batteries

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Runhua Gao, Bosi Huang, Mengtian Zhang, Xinru Wu, Yanze Song, Xiao Xiao, Zhihong Piao, Zhoujie Lao, Zhiyuan Han, Guangmin Zhou
{"title":"Revealing the Coordination and Mediation Mechanism of Arylboronic Acids Toward Energy-Dense Li-S Batteries","authors":"Runhua Gao, Bosi Huang, Mengtian Zhang, Xinru Wu, Yanze Song, Xiao Xiao, Zhihong Piao, Zhoujie Lao, Zhiyuan Han, Guangmin Zhou","doi":"10.1002/adma.202502210","DOIUrl":null,"url":null,"abstract":"Lithium-sulfur (Li─S) batteries offer a promising avenue for the next generation of energy-dense batteries. However, it is quite challenging to realize practical Li─S batteries under limited electrolytes and high sulfur loading, which may exacerbate problems of interface deterioration and low sulfur utilization. Herein, the coordination and mediation chemistry of arylboronic acids that enable energy-dense and long-term-cycling Li─S batteries is proposed. The coordination chemistry between NO<sub>3</sub><sup>−</sup> and arylboronic acids breaks the resonance configuration of NO<sub>3</sub><sup>−</sup> and thermodynamically promotes its reduction on the anode, contributing to a mechanically robust interface. The mediation chemistry between lithium arylborate and polysulfides distorts S─S/Li─S bonds, alters the rate-determining step from Li<sub>2</sub>S<sub>4</sub>→Li<sub>2</sub>S<sub>2</sub> to Li<sub>2</sub>S<sub>6</sub>→Li<sub>2</sub>S<sub>4</sub>, and homogeneously accelerates the sulfur redox kinetics. Li─S batteries using 3,5-bis(trifluoromethyl)phenylboronic acid (BPBA) show excellent cycling stability (1000 cycles with a low capacity decay rate of 0.033% per cycle) and a high energy density of 422 Wh kg<sup>−1</sup> under aggressive chemical environments (high sulfur loading of 17.4 mg cm<sup>−2</sup> and lean electrolyte operation of 3.6 mL g<sub>S</sub><sup>−1</sup>). The basic mechanism of coordination and mediation chemistry can be extended to other arylboronic acids with different configurations and compositions, thus broadening the application prospect of arylboronic acids in the electrolyte engineering of Li─S batteries.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"72 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202502210","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium-sulfur (Li─S) batteries offer a promising avenue for the next generation of energy-dense batteries. However, it is quite challenging to realize practical Li─S batteries under limited electrolytes and high sulfur loading, which may exacerbate problems of interface deterioration and low sulfur utilization. Herein, the coordination and mediation chemistry of arylboronic acids that enable energy-dense and long-term-cycling Li─S batteries is proposed. The coordination chemistry between NO3 and arylboronic acids breaks the resonance configuration of NO3 and thermodynamically promotes its reduction on the anode, contributing to a mechanically robust interface. The mediation chemistry between lithium arylborate and polysulfides distorts S─S/Li─S bonds, alters the rate-determining step from Li2S4→Li2S2 to Li2S6→Li2S4, and homogeneously accelerates the sulfur redox kinetics. Li─S batteries using 3,5-bis(trifluoromethyl)phenylboronic acid (BPBA) show excellent cycling stability (1000 cycles with a low capacity decay rate of 0.033% per cycle) and a high energy density of 422 Wh kg−1 under aggressive chemical environments (high sulfur loading of 17.4 mg cm−2 and lean electrolyte operation of 3.6 mL gS−1). The basic mechanism of coordination and mediation chemistry can be extended to other arylboronic acids with different configurations and compositions, thus broadening the application prospect of arylboronic acids in the electrolyte engineering of Li─S batteries.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信