{"title":"Boosting Photocatalytic Hydrogen Evolution of 2D Multinary Copper Chalcogenide Nanocrystals Enabled by Tuning Metal Precursors","authors":"Yu Li, Zheming Liu, Liya Zhang, Jie Chen, Shuaibing Wang, Mengmeng Ma, Zhe Yin, Zhongwei Man, Ding Yi, Zhijie Wang, Aiwei Tang","doi":"10.1002/smll.202501503","DOIUrl":null,"url":null,"abstract":"It is challenging to clarify modulation mechanisms and structure-activity relationships in the ion-regulation engineering of multinary copper chalcogenide nanocrystals (NCs) for solar-to-hydrogen conversion. Herein, quaternary 2D Cu–In–Zn–S NCs are fabricated using various indium precursors to expose a high proportion of (0002) crystal facets that are positively correlated with their photocatalytic activities. Theoretical calculations demonstrate that the specific adsorption of anions on the crystal facets significantly influences their anisotropic growth and, in turn, photocatalytic performance. Furthermore, 2D Cu–In–Ga–Zn–S (CIGZS) NCs are prepared by partially or completely substituting In<sup>3+</sup> with Ga<sup>3+</sup> cations. As the Ga<sup>3</sup>⁺ content gradually increases, the resulting photocatalytic activities follow a bell-shaped trend. The initial increase is attributed to a synergistic effect of optimized catalytic ability and a stronger electron driving force introduced by Ga<sup>3</sup>⁺ incorporation. However, excessive Ga<sup>3</sup>⁺ substitution widens the bandgap, reducing light absorption and conversion, ultimately leading to a decline in photocatalytic activities. Notably, the photocatalytic activity of Cu–Ga–Zn–S NCs with the highest hydrogen evolution rate of 1566.8 µmol g<sup>−1</sup> h<sup>−1</sup> under visible light surpassed those of all In-based NCs due to enhanced electron-hole separation efficiency and highly effective active sites. This study provides valuable insights into the rational design of multinary copper-based photocatalysts for solar-driven hydrogen production.","PeriodicalId":228,"journal":{"name":"Small","volume":"61 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202501503","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
It is challenging to clarify modulation mechanisms and structure-activity relationships in the ion-regulation engineering of multinary copper chalcogenide nanocrystals (NCs) for solar-to-hydrogen conversion. Herein, quaternary 2D Cu–In–Zn–S NCs are fabricated using various indium precursors to expose a high proportion of (0002) crystal facets that are positively correlated with their photocatalytic activities. Theoretical calculations demonstrate that the specific adsorption of anions on the crystal facets significantly influences their anisotropic growth and, in turn, photocatalytic performance. Furthermore, 2D Cu–In–Ga–Zn–S (CIGZS) NCs are prepared by partially or completely substituting In3+ with Ga3+ cations. As the Ga3⁺ content gradually increases, the resulting photocatalytic activities follow a bell-shaped trend. The initial increase is attributed to a synergistic effect of optimized catalytic ability and a stronger electron driving force introduced by Ga3⁺ incorporation. However, excessive Ga3⁺ substitution widens the bandgap, reducing light absorption and conversion, ultimately leading to a decline in photocatalytic activities. Notably, the photocatalytic activity of Cu–Ga–Zn–S NCs with the highest hydrogen evolution rate of 1566.8 µmol g−1 h−1 under visible light surpassed those of all In-based NCs due to enhanced electron-hole separation efficiency and highly effective active sites. This study provides valuable insights into the rational design of multinary copper-based photocatalysts for solar-driven hydrogen production.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.