Modeling of a Multizone Circulating Reactor for Gas-Phase Propylene (Co)Polymerization: From Pilot to Full Scale Reactors

IF 3.8 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Kusuma Kulajanpeng, Nida Sheibat-Othman, Wiwut Tanthapanichakoon, Timothy F. L. McKenna
{"title":"Modeling of a Multizone Circulating Reactor for Gas-Phase Propylene (Co)Polymerization: From Pilot to Full Scale Reactors","authors":"Kusuma Kulajanpeng, Nida Sheibat-Othman, Wiwut Tanthapanichakoon, Timothy F. L. McKenna","doi":"10.1021/acs.iecr.4c04558","DOIUrl":null,"url":null,"abstract":"A multiscale steady state model of a multizone circulating reactor (MZCR) is developed for propylene homo- and copolymerization on supported pseudo-single-site catalyst. The model includes nonideal thermodynamics to describe monomer sorption effects, a population balance to predict the particle size distribution (PSD), momentum balances to describe the residence time distribution (RTD) of the particles, and a full kinetic model to calculate the polymerization rate, cumulative molecular weight (MWD), and chemical composition (CCD) distributions of a pseudo-single-site ZN catalyst. The model was first compared with the available literature data that was based on simplified kinetics and Henry’s law for monomer sorption. The full kinetic and thermodynamic models were then included to demonstrate that they are quite important to consider. The full model was then used to understand the relationship among the reactor operating conditions, reactor performance, and product characteristics in a commercial-scale MZCR reactor. When model predictions are compared to available patent data, the proposed model is shown to be capable of describing the MZCR performance in a large-scale operation as well as predicting the monomodal and bimodal shapes of the MWDs.","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"35 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acs.iecr.4c04558","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A multiscale steady state model of a multizone circulating reactor (MZCR) is developed for propylene homo- and copolymerization on supported pseudo-single-site catalyst. The model includes nonideal thermodynamics to describe monomer sorption effects, a population balance to predict the particle size distribution (PSD), momentum balances to describe the residence time distribution (RTD) of the particles, and a full kinetic model to calculate the polymerization rate, cumulative molecular weight (MWD), and chemical composition (CCD) distributions of a pseudo-single-site ZN catalyst. The model was first compared with the available literature data that was based on simplified kinetics and Henry’s law for monomer sorption. The full kinetic and thermodynamic models were then included to demonstrate that they are quite important to consider. The full model was then used to understand the relationship among the reactor operating conditions, reactor performance, and product characteristics in a commercial-scale MZCR reactor. When model predictions are compared to available patent data, the proposed model is shown to be capable of describing the MZCR performance in a large-scale operation as well as predicting the monomodal and bimodal shapes of the MWDs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Industrial & Engineering Chemistry Research
Industrial & Engineering Chemistry Research 工程技术-工程:化工
CiteScore
7.40
自引率
7.10%
发文量
1467
审稿时长
2.8 months
期刊介绍: ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信