{"title":"Material Selection for Enhanced Performance in Anion Exchange Membrane Water Electrolyzers: A Study of Membranes and Gaskets","authors":"Kailash Singh, Kaliaperumal Selvaraj","doi":"10.1021/acs.iecr.4c04336","DOIUrl":null,"url":null,"abstract":"Anion exchange membrane water electrolyzer (AEMWE) is an emerging technology for large-scale hydrogen production, where membrane electrode assembly (MEA) plays a critical role in the electrolyzer efficiency. This study investigates the effects of different membranes (Piperion, Aemion, and Sustainion) and gaskets (Viton, poly(tetrafluoroethylene) (PTFE), and Silicon) using a non-platinum group metal (non-PGM) bifunctional electrocatalyst under fixed compression and flow rates. Membrane properties such as ionic resistance and diffusion and gasket properties like thermal suitability and compressibility significantly affect the overall performance of AEMWE. The results indicate that Sustainion and Aemion membranes are best suited for lab-scale and industrial applications, respectively, while Silicon and PTFE gaskets are optimal for corresponding scales. Understanding these effects can help to improve the efficiency and guide material selection. This study provides valuable insights for researchers developing AEMWE technology, enabling advancements from laboratory research to megawatt-level industrial hydrogen production and supporting the transition to clean-energy solutions.","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"29 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acs.iecr.4c04336","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Anion exchange membrane water electrolyzer (AEMWE) is an emerging technology for large-scale hydrogen production, where membrane electrode assembly (MEA) plays a critical role in the electrolyzer efficiency. This study investigates the effects of different membranes (Piperion, Aemion, and Sustainion) and gaskets (Viton, poly(tetrafluoroethylene) (PTFE), and Silicon) using a non-platinum group metal (non-PGM) bifunctional electrocatalyst under fixed compression and flow rates. Membrane properties such as ionic resistance and diffusion and gasket properties like thermal suitability and compressibility significantly affect the overall performance of AEMWE. The results indicate that Sustainion and Aemion membranes are best suited for lab-scale and industrial applications, respectively, while Silicon and PTFE gaskets are optimal for corresponding scales. Understanding these effects can help to improve the efficiency and guide material selection. This study provides valuable insights for researchers developing AEMWE technology, enabling advancements from laboratory research to megawatt-level industrial hydrogen production and supporting the transition to clean-energy solutions.
期刊介绍:
ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.