{"title":"Lattice-Matched Ta3N5/Nb5N6 Interface Enables a Bulk Charge Separation Efficiency of Close to 100%","authors":"Yitong Liu, Zeyu Fan, Ronghua Li, Andraž Mavrič, Iztok Arčon, Matjaz Valant, Gregor Kapun, Beibei Zhang, Chao Feng, Zemin Zhang, Tingxi Chen, Yanning Zhang, Yanbo Li","doi":"10.1021/acsenergylett.5c00603","DOIUrl":null,"url":null,"abstract":"The interface between the semiconductor light absorber and the metal electrode is critical for facilitating the extraction of photogenerated charges in photoelectrodes. Achieving a lattice-matched semiconductor/electrode interface with low defect density is highly desirable but remains a challenge for Ta<sub>3</sub>N<sub>5</sub> photoanodes. In this study, we synthesized niobium nitride thin film electrodes with controllable crystallographic phases to achieve a lattice-matched Ta<sub>3</sub>N<sub>5</sub>/Nb<sub>5</sub>N<sub>6</sub> back contact. This results in an enhanced crystallinity of the Ta<sub>3</sub>N<sub>5</sub> film and reduced interfacial defect density. Consequently, the photoanode with the lattice-matched back contact attains a record half-cell solar-to-hydrogen conversion efficiency of 4.1%, attributed to the bulk carrier separation efficiency of nearly 100%. This work highlights lattice-matching as an effective strategy to enhance the efficiency of thin film-based solar energy conversion devices.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"72 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.5c00603","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The interface between the semiconductor light absorber and the metal electrode is critical for facilitating the extraction of photogenerated charges in photoelectrodes. Achieving a lattice-matched semiconductor/electrode interface with low defect density is highly desirable but remains a challenge for Ta3N5 photoanodes. In this study, we synthesized niobium nitride thin film electrodes with controllable crystallographic phases to achieve a lattice-matched Ta3N5/Nb5N6 back contact. This results in an enhanced crystallinity of the Ta3N5 film and reduced interfacial defect density. Consequently, the photoanode with the lattice-matched back contact attains a record half-cell solar-to-hydrogen conversion efficiency of 4.1%, attributed to the bulk carrier separation efficiency of nearly 100%. This work highlights lattice-matching as an effective strategy to enhance the efficiency of thin film-based solar energy conversion devices.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.