Ryota Takaki, Yahor Savich, Jan Brugués, Frank Jülicher
{"title":"Active Loop Extrusion Guides DNA-Protein Condensation","authors":"Ryota Takaki, Yahor Savich, Jan Brugués, Frank Jülicher","doi":"10.1103/physrevlett.134.128401","DOIUrl":null,"url":null,"abstract":"The spatial organization of DNA involves DNA loop extrusion and the formation of protein-DNA condensates. While the significance of each process is increasingly recognized, their interplay remains unexplored. Using molecular dynamics simulation and theory we investigate this interplay. Our findings reveal that loop extrusion can enhance the dynamics of condensation and promotes coalescence and ripening of condensates. Further, the DNA loop enables condensate formation under DNA tension and position condensates. The concurrent presence of loop extrusion and condensate formation results in the formation of distinct domains similar to TADs, an outcome not achieved by either process alone. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"94 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.134.128401","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The spatial organization of DNA involves DNA loop extrusion and the formation of protein-DNA condensates. While the significance of each process is increasingly recognized, their interplay remains unexplored. Using molecular dynamics simulation and theory we investigate this interplay. Our findings reveal that loop extrusion can enhance the dynamics of condensation and promotes coalescence and ripening of condensates. Further, the DNA loop enables condensate formation under DNA tension and position condensates. The concurrent presence of loop extrusion and condensate formation results in the formation of distinct domains similar to TADs, an outcome not achieved by either process alone. Published by the American Physical Society2025
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks