Cooperativity of Confined Nematic Microswimmers: From One to Many

IF 8.1 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Shubhadeep Mandal, Thomas J. Mason, Anthony C. Croft, Marco G. Mazza
{"title":"Cooperativity of Confined Nematic Microswimmers: From One to Many","authors":"Shubhadeep Mandal, Thomas J. Mason, Anthony C. Croft, Marco G. Mazza","doi":"10.1103/physrevlett.134.128302","DOIUrl":null,"url":null,"abstract":"Controlling the behavior of microswimmers is a major challenge to extract work for novel active matter applications. Geometric confinement is often used for controlling soft matter systems. However, in comparison to the case of Newtonian fluids, the effects of solid interfaces on microswimmers moving through an anisotropic fluid are far less understood. By means of nematic multiparticle collision dynamics simulations and analytical modeling, we investigate the dynamical behavior of swimmers immersed in a nematic liquid crystal and confined by solid walls. For isolated squirmers, we find a rich phase diagram including oscillatory dynamics for weak pushers, depending on the strength of their propulsion and degree of confinement. Our theoretical model shows that, unlike in the isotropic case, in a nematic fluid, force dipole, source dipole, and source quadrupole singularities all are required for the onset of oscillations. Increasing the number of squirmers shows the emergence of cooperativity in pusher-type squirmers, while pullers’ flow fields hinder each other’s motion. The interplay of nematodynamic torque, wall-induced elastic repulsion, and active flows thus offers the opportunity for both control and transport in active nematic systems. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"28 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.134.128302","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Controlling the behavior of microswimmers is a major challenge to extract work for novel active matter applications. Geometric confinement is often used for controlling soft matter systems. However, in comparison to the case of Newtonian fluids, the effects of solid interfaces on microswimmers moving through an anisotropic fluid are far less understood. By means of nematic multiparticle collision dynamics simulations and analytical modeling, we investigate the dynamical behavior of swimmers immersed in a nematic liquid crystal and confined by solid walls. For isolated squirmers, we find a rich phase diagram including oscillatory dynamics for weak pushers, depending on the strength of their propulsion and degree of confinement. Our theoretical model shows that, unlike in the isotropic case, in a nematic fluid, force dipole, source dipole, and source quadrupole singularities all are required for the onset of oscillations. Increasing the number of squirmers shows the emergence of cooperativity in pusher-type squirmers, while pullers’ flow fields hinder each other’s motion. The interplay of nematodynamic torque, wall-induced elastic repulsion, and active flows thus offers the opportunity for both control and transport in active nematic systems. Published by the American Physical Society 2025
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical review letters
Physical review letters 物理-物理:综合
CiteScore
16.50
自引率
7.00%
发文量
2673
审稿时长
2.2 months
期刊介绍: Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics: General physics, including statistical and quantum mechanics and quantum information Gravitation, astrophysics, and cosmology Elementary particles and fields Nuclear physics Atomic, molecular, and optical physics Nonlinear dynamics, fluid dynamics, and classical optics Plasma and beam physics Condensed matter and materials physics Polymers, soft matter, biological, climate and interdisciplinary physics, including networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信