Mengjie Cao , Shuangde Li , Shikun Wang , Weichen Xu , Xin Zhou , Guangxin Ma , Yunfa Chen
{"title":"Zn modulating the metal support interaction to promote the sintering resistance of hydrotalcite-derived NiZnAl catalyst for methane cracking","authors":"Mengjie Cao , Shuangde Li , Shikun Wang , Weichen Xu , Xin Zhou , Guangxin Ma , Yunfa Chen","doi":"10.1016/j.jcat.2025.116103","DOIUrl":null,"url":null,"abstract":"<div><div>Developing an efficient and environmentally friendly catalyst is important for the production of pure H<sub>2</sub> and carbon nanomaterials. Catalytic cracking of methane offers the possibility of producing these high-value products. For this reason, stabilizing the surface active sites of activated methane by modulating the interaction between metal and support has attracted much attention in the development of hydrotalcite-derived NiAl catalysts. Hence, the influence of Zn content and cracking temperature on the structure and performance of hydrotalcite-derived NiZnAl methane cracking catalysts were investigated. It is shown that alloying Zn with Ni reduces the electron density near Ni atoms, promotes the reduction of mixed metal oxides, producing strong interactions between Ni and support, thus improving the stability of the catalyst during methane decomposition. Thus, this strong interaction between Ni and support stabilized the Ni particle size and inhibited the sintering of Ni during the reaction. The Ni<sub>2.7</sub>Zn<sub>0.3</sub>Al can maintain a H<sub>2</sub> yield of more than 60 % over a 600 min reaction time at 600 °C. TEM analysis showed that the strong metal support interaction changed the morphology of the deposited carbon, maintained the balance between carbon diffusion and CH<sub>4</sub> dissociation, provided more growth sites for carbon nanotubes, and also prevented the rapid deactivation of the catalysts because of carbon encapsulation. This article may provide guidance for the design of Ni-based methane cracking catalysts with excellent stability.</div></div>","PeriodicalId":346,"journal":{"name":"Journal of Catalysis","volume":"447 ","pages":"Article 116103"},"PeriodicalIF":6.5000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002195172500168X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Developing an efficient and environmentally friendly catalyst is important for the production of pure H2 and carbon nanomaterials. Catalytic cracking of methane offers the possibility of producing these high-value products. For this reason, stabilizing the surface active sites of activated methane by modulating the interaction between metal and support has attracted much attention in the development of hydrotalcite-derived NiAl catalysts. Hence, the influence of Zn content and cracking temperature on the structure and performance of hydrotalcite-derived NiZnAl methane cracking catalysts were investigated. It is shown that alloying Zn with Ni reduces the electron density near Ni atoms, promotes the reduction of mixed metal oxides, producing strong interactions between Ni and support, thus improving the stability of the catalyst during methane decomposition. Thus, this strong interaction between Ni and support stabilized the Ni particle size and inhibited the sintering of Ni during the reaction. The Ni2.7Zn0.3Al can maintain a H2 yield of more than 60 % over a 600 min reaction time at 600 °C. TEM analysis showed that the strong metal support interaction changed the morphology of the deposited carbon, maintained the balance between carbon diffusion and CH4 dissociation, provided more growth sites for carbon nanotubes, and also prevented the rapid deactivation of the catalysts because of carbon encapsulation. This article may provide guidance for the design of Ni-based methane cracking catalysts with excellent stability.
期刊介绍:
The Journal of Catalysis publishes scholarly articles on both heterogeneous and homogeneous catalysis, covering a wide range of chemical transformations. These include various types of catalysis, such as those mediated by photons, plasmons, and electrons. The focus of the studies is to understand the relationship between catalytic function and the underlying chemical properties of surfaces and metal complexes.
The articles in the journal offer innovative concepts and explore the synthesis and kinetics of inorganic solids and homogeneous complexes. Furthermore, they discuss spectroscopic techniques for characterizing catalysts, investigate the interaction of probes and reacting species with catalysts, and employ theoretical methods.
The research presented in the journal should have direct relevance to the field of catalytic processes, addressing either fundamental aspects or applications of catalysis.