NHC-Cracker: A Platform for the In Silico Engineering of N-Heterocyclic Carbenes for Diverse Chemical Applications

IF 11.3 1区 化学 Q1 CHEMISTRY, PHYSICAL
Gentoku Takasao, Bholanath Maity, Sayan Dutta, Rajesh Kancherla, Magnus Rueping, Luigi Cavallo
{"title":"NHC-Cracker: A Platform for the In Silico Engineering of N-Heterocyclic Carbenes for Diverse Chemical Applications","authors":"Gentoku Takasao, Bholanath Maity, Sayan Dutta, Rajesh Kancherla, Magnus Rueping, Luigi Cavallo","doi":"10.1021/acscatal.4c06474","DOIUrl":null,"url":null,"abstract":"We present an in silico workflow to streamline the identification of promising <i>N</i>-heterocyclic carbenes (NHCs) as ligands in metal catalysis or as catalysts in organocatalysis. Central to this workflow is the NHC-cracker database, which contains over 200 descriptors for 1781 nonredundant NHCs, each documented as an NHC-metal complex in the Cambridge Structural Database. To demonstrate its utility, we applied it to two catalytic problems using literature data. First, we analyzed 21 Ru–NHC complexes active in the ethenolysis of cyclic olefins. An MLR (multivariate linear regression) model trained on 11 Ru complexes based on NHCs in NHC-cracker successfully rationalized the behavior of the remaining 10 complexes. Second, we examined an Ir–Ni dual-catalyzed C<sub>sp2</sub>–C<sub>sp3</sub> cross-coupling reaction involving five experimentally tested NHC skeletons. Using a multiscale workflow, we created DFT-based data sets to train two MLR models: one for productive substrate activation and another for detrimental NHC dimerization. Consistent with experiments, the models identified oxazoles as reactive, while benzimidazoles, triazoles, thiazoles, and untested cyclic (alkyl)(amino)carbenes were predicted as nonreactive. Experimental validation confirmed the latter’s lack of productive substrate activation, supporting the proposed mechanistic scenario.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"33 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscatal.4c06474","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We present an in silico workflow to streamline the identification of promising N-heterocyclic carbenes (NHCs) as ligands in metal catalysis or as catalysts in organocatalysis. Central to this workflow is the NHC-cracker database, which contains over 200 descriptors for 1781 nonredundant NHCs, each documented as an NHC-metal complex in the Cambridge Structural Database. To demonstrate its utility, we applied it to two catalytic problems using literature data. First, we analyzed 21 Ru–NHC complexes active in the ethenolysis of cyclic olefins. An MLR (multivariate linear regression) model trained on 11 Ru complexes based on NHCs in NHC-cracker successfully rationalized the behavior of the remaining 10 complexes. Second, we examined an Ir–Ni dual-catalyzed Csp2–Csp3 cross-coupling reaction involving five experimentally tested NHC skeletons. Using a multiscale workflow, we created DFT-based data sets to train two MLR models: one for productive substrate activation and another for detrimental NHC dimerization. Consistent with experiments, the models identified oxazoles as reactive, while benzimidazoles, triazoles, thiazoles, and untested cyclic (alkyl)(amino)carbenes were predicted as nonreactive. Experimental validation confirmed the latter’s lack of productive substrate activation, supporting the proposed mechanistic scenario.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信