Sang-Ho Kim, Yongseok Oh, Sangyeong Son, S. Sakinah, Myung-Ki Cheoun
{"title":"Effective Lagrangian for strong and electromagnetic interactions of high-spin resonances","authors":"Sang-Ho Kim, Yongseok Oh, Sangyeong Son, S. Sakinah, Myung-Ki Cheoun","doi":"10.1103/physrevd.111.054031","DOIUrl":null,"url":null,"abstract":"Recent experiments of photon-nucleon and meson-nucleon scatterings have accumulated a lot of data for various meson production processes. One of the purposes of those experiments is to search for the missing resonances which were not discovered until now but whose existence was predicted by hadron models. The analyses of the data requires the development of dynamical coupled-channel models. Since several missing resonances are expected to have spin higher than 3</a:mn>/</a:mo>2</a:mn></a:math>, we need to include higher-spin resonances in dynamical coupled-channel models, which enable us to determine the couplings of effective Lagrangians of higher-spin baryons with pseudoscalar mesons or vector mesons. However, hadron models, such as quark models, give predictions only of the decay amplitudes of such baryons. Here we demonstrate the formalism of high-spin resonances and construct the relation between the coupling constants of effective Lagrangians and the partial decay widths that can be predicted by hadron models. This allows us to compare the coupling constants to the hadron model predictions not only in magnitude but in sign as well. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"183 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.054031","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Recent experiments of photon-nucleon and meson-nucleon scatterings have accumulated a lot of data for various meson production processes. One of the purposes of those experiments is to search for the missing resonances which were not discovered until now but whose existence was predicted by hadron models. The analyses of the data requires the development of dynamical coupled-channel models. Since several missing resonances are expected to have spin higher than 3/2, we need to include higher-spin resonances in dynamical coupled-channel models, which enable us to determine the couplings of effective Lagrangians of higher-spin baryons with pseudoscalar mesons or vector mesons. However, hadron models, such as quark models, give predictions only of the decay amplitudes of such baryons. Here we demonstrate the formalism of high-spin resonances and construct the relation between the coupling constants of effective Lagrangians and the partial decay widths that can be predicted by hadron models. This allows us to compare the coupling constants to the hadron model predictions not only in magnitude but in sign as well. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.