Sydney E. Towell, Maxim Ratushnyy, Lauren S. Cooke, Geoffrey M. Lewis, Aleksandr V. Zhukhovitskiy
{"title":"Deconstruction of rubber via C–H amination and aza-Cope rearrangement","authors":"Sydney E. Towell, Maxim Ratushnyy, Lauren S. Cooke, Geoffrey M. Lewis, Aleksandr V. Zhukhovitskiy","doi":"10.1038/s41586-025-08716-6","DOIUrl":null,"url":null,"abstract":"<p>Limited strategies exist for chemical recycling of commodity diene polymers, like those found in tyres<sup>1,2,3</sup>. Here we apply C–H amination and backbone rearrangement of polymers to deconstruct these materials into precursors for epoxy resins. Specifically, we develop a sulfur diimide reagent<sup>4,5</sup> that enables up to about 35% allylic amination of diene polymers and rubber. Then, we apply the cationic 2-aza-Cope rearrangement to deconstruct aminated diene polymers. In a model system, we see molecular weight reduction from 58,100 to approximately 400 g mol<sup>−1</sup>, and aminated post-consumer rubber is deconstructed over 6 hours into soluble amine-functionalized polymers, which can be utilized to prepare epoxy thermosets with similar stiffnesses to commercial bisphenol A-derived resins<sup>6</sup>. Altogether, this work demonstrates the power of C–H amination and backbone rearrangement to enable chemical recycling of post-consumer materials.</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":"21 1","pages":""},"PeriodicalIF":50.5000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41586-025-08716-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Limited strategies exist for chemical recycling of commodity diene polymers, like those found in tyres1,2,3. Here we apply C–H amination and backbone rearrangement of polymers to deconstruct these materials into precursors for epoxy resins. Specifically, we develop a sulfur diimide reagent4,5 that enables up to about 35% allylic amination of diene polymers and rubber. Then, we apply the cationic 2-aza-Cope rearrangement to deconstruct aminated diene polymers. In a model system, we see molecular weight reduction from 58,100 to approximately 400 g mol−1, and aminated post-consumer rubber is deconstructed over 6 hours into soluble amine-functionalized polymers, which can be utilized to prepare epoxy thermosets with similar stiffnesses to commercial bisphenol A-derived resins6. Altogether, this work demonstrates the power of C–H amination and backbone rearrangement to enable chemical recycling of post-consumer materials.
期刊介绍:
Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.