A broad-spectrum lasso peptide antibiotic targeting the bacterial ribosome

IF 50.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Nature Pub Date : 2025-03-26 DOI:10.1038/s41586-025-08723-7
Manoj Jangra, Dmitrii Y. Travin, Elena V. Aleksandrova, Manpreet Kaur, Lena Darwish, Kalinka Koteva, Dorota Klepacki, Wenliang Wang, Maya Tiffany, Akosiererem Sokaribo, Brian K. Coombes, Nora Vázquez-Laslop, Yury S. Polikanov, Alexander S. Mankin, Gerard D. Wright
{"title":"A broad-spectrum lasso peptide antibiotic targeting the bacterial ribosome","authors":"Manoj Jangra, Dmitrii Y. Travin, Elena V. Aleksandrova, Manpreet Kaur, Lena Darwish, Kalinka Koteva, Dorota Klepacki, Wenliang Wang, Maya Tiffany, Akosiererem Sokaribo, Brian K. Coombes, Nora Vázquez-Laslop, Yury S. Polikanov, Alexander S. Mankin, Gerard D. Wright","doi":"10.1038/s41586-025-08723-7","DOIUrl":null,"url":null,"abstract":"<p>Lasso peptides (biologically active molecules with a distinct structurally constrained knotted fold) are natural products that belong to the class of ribosomally synthesized and post-translationally modified peptides<sup>1,2,3</sup>. Lasso peptides act on several bacterial targets<sup>4,5</sup>, but none have been reported to inhibit the ribosome, one of the main targets of antibiotics in the bacterial cell<sup>6,7</sup>. Here we report the identification and characterization of the lasso peptide antibiotic lariocidin and its internally cyclized derivative lariocidin B, produced by <i>Paenibacillus</i> sp. M2, which has broad-spectrum activity against a range of bacterial pathogens. We show that lariocidins inhibit bacterial growth by binding to the ribosome and interfering with protein synthesis. Structural, genetic and biochemical data show that lariocidins bind at a unique site in the small ribosomal subunit, where they interact with the 16S ribosomal RNA and aminoacyl-tRNA, inhibiting translocation and inducing miscoding. Lariocidin is unaffected by common resistance mechanisms, has a low propensity for generating spontaneous resistance, shows no toxicity to human cells, and has potent in vivo activity in a mouse model of <i>Acinetobacter baumannii</i> infection. Our identification of ribosome-targeting lasso peptides uncovers new routes towards the discovery of alternative protein-synthesis inhibitors and offers a novel chemical scaffold for the development of much-needed antibacterial drugs.</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":"99 1","pages":""},"PeriodicalIF":50.5000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41586-025-08723-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Lasso peptides (biologically active molecules with a distinct structurally constrained knotted fold) are natural products that belong to the class of ribosomally synthesized and post-translationally modified peptides1,2,3. Lasso peptides act on several bacterial targets4,5, but none have been reported to inhibit the ribosome, one of the main targets of antibiotics in the bacterial cell6,7. Here we report the identification and characterization of the lasso peptide antibiotic lariocidin and its internally cyclized derivative lariocidin B, produced by Paenibacillus sp. M2, which has broad-spectrum activity against a range of bacterial pathogens. We show that lariocidins inhibit bacterial growth by binding to the ribosome and interfering with protein synthesis. Structural, genetic and biochemical data show that lariocidins bind at a unique site in the small ribosomal subunit, where they interact with the 16S ribosomal RNA and aminoacyl-tRNA, inhibiting translocation and inducing miscoding. Lariocidin is unaffected by common resistance mechanisms, has a low propensity for generating spontaneous resistance, shows no toxicity to human cells, and has potent in vivo activity in a mouse model of Acinetobacter baumannii infection. Our identification of ribosome-targeting lasso peptides uncovers new routes towards the discovery of alternative protein-synthesis inhibitors and offers a novel chemical scaffold for the development of much-needed antibacterial drugs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature
Nature 综合性期刊-综合性期刊
CiteScore
90.00
自引率
1.20%
发文量
3652
审稿时长
3 months
期刊介绍: Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信