In situ diffraction study on the annealing performance of a rapidly solidified ribbon consolidated Mg-Ca-Y-Zn-Mn alloy

IF 15.8 1区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING
Jenő Gubicza, Kristián Máthis, Péter Nagy, Péter Jenei, Zoltán Hegedűs, Andrea Farkas, Jozef Veselý, Shin-ichi Inoue, Daria Drozdenko, Yoshihito Kawamura
{"title":"In situ diffraction study on the annealing performance of a rapidly solidified ribbon consolidated Mg-Ca-Y-Zn-Mn alloy","authors":"Jenő Gubicza, Kristián Máthis, Péter Nagy, Péter Jenei, Zoltán Hegedűs, Andrea Farkas, Jozef Veselý, Shin-ichi Inoue, Daria Drozdenko, Yoshihito Kawamura","doi":"10.1016/j.jma.2025.02.024","DOIUrl":null,"url":null,"abstract":"Dilute Mg alloys processed by the rapidly solidified ribbon consolidation (RSRC) technique are candidate materials for structural applications due to their enhanced mechanical performance. The thermal stability of the structure in these alloys strongly influences their mechanical performance at elevated temperatures. In this study, an RSRC-processed Mg—1 % Ca—0.5 % Zn—0.1 % Y—0.03 % Mn (at%) alloy was heated at a constant rate up to 833 K, and concurrently in situ X-ray diffraction (XRD) measurements were performed using synchrotron radiation in order to monitor the changes in the structure. In addition, ex situ electron microscopy investigations were carried out before and after annealing to complete the XRD study. On the basis of XRD results, the stages of the microstructure evolution during heating were identified. In addition, the thermal expansion coefficients of the matrix and the Mg<sub>2</sub>Ca secondary phase were determined. Between 299 and 400 K, the lattice constants of both the matrix and the Mg<sub>2</sub>Ca phase increased due to thermal expansion. In the temperature range of 400-673 <span>K</span>, the increase of the lattice constants with increasing the temperature continued, but their rate was different for the two phases which can induce thermal stresses. Between 673 and 753 K, the lattice constants of the secondary phase did not change most probably due to the compensating effects of the thermal expansion and the decrease of the Ca content. In the temperature range of 753–793 K, the Mg<sub>2</sub>Ca phase started to dissolve. Between 793 and 833 K the dissolution continued, and additionally the matrix was partially melted.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"29 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jma.2025.02.024","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Dilute Mg alloys processed by the rapidly solidified ribbon consolidation (RSRC) technique are candidate materials for structural applications due to their enhanced mechanical performance. The thermal stability of the structure in these alloys strongly influences their mechanical performance at elevated temperatures. In this study, an RSRC-processed Mg—1 % Ca—0.5 % Zn—0.1 % Y—0.03 % Mn (at%) alloy was heated at a constant rate up to 833 K, and concurrently in situ X-ray diffraction (XRD) measurements were performed using synchrotron radiation in order to monitor the changes in the structure. In addition, ex situ electron microscopy investigations were carried out before and after annealing to complete the XRD study. On the basis of XRD results, the stages of the microstructure evolution during heating were identified. In addition, the thermal expansion coefficients of the matrix and the Mg2Ca secondary phase were determined. Between 299 and 400 K, the lattice constants of both the matrix and the Mg2Ca phase increased due to thermal expansion. In the temperature range of 400-673 K, the increase of the lattice constants with increasing the temperature continued, but their rate was different for the two phases which can induce thermal stresses. Between 673 and 753 K, the lattice constants of the secondary phase did not change most probably due to the compensating effects of the thermal expansion and the decrease of the Ca content. In the temperature range of 753–793 K, the Mg2Ca phase started to dissolve. Between 793 and 833 K the dissolution continued, and additionally the matrix was partially melted.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Magnesium and Alloys
Journal of Magnesium and Alloys Engineering-Mechanics of Materials
CiteScore
20.20
自引率
14.80%
发文量
52
审稿时长
59 days
期刊介绍: The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信