Interface engineering of Fe doped NiO/NiSe2 tailoring d-band center for enhanced oxygen evolution activity

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Xinbin Ma , Zeyuan Wang , Baoshan Hou , Yanxing Xu , Ruijian Dong , Cuijuan Xuan
{"title":"Interface engineering of Fe doped NiO/NiSe2 tailoring d-band center for enhanced oxygen evolution activity","authors":"Xinbin Ma ,&nbsp;Zeyuan Wang ,&nbsp;Baoshan Hou ,&nbsp;Yanxing Xu ,&nbsp;Ruijian Dong ,&nbsp;Cuijuan Xuan","doi":"10.1016/j.apsusc.2025.163087","DOIUrl":null,"url":null,"abstract":"<div><div>Exploring high-efficiency non-precious metal-based electrocatalysts for the oxygen evolution reaction (OER) is pivotal to unlock sustainable hydrogen production through water electrolysis. Herein, we engineered iron-doped NiO/NiSe<sub>2</sub> (Fe-NiO/NiSe<sub>2</sub>) heterostructured catalysts via a two-step solvothermal synthesis and low-temperature selenization. Simply control of calcination conditions enables regulated metal reduction/selenization, thereby tailoring different crystallographic phase and heterointerface formation. Density functional theory (DFT) calculations reveal that oxide/selenide heterointerfaces induce interfacial electron redistribution, reducing bandgap. Concurrently, heterointerface effects upshift d-band center positions compared with Fe-NiO, enhancing the reactivity of metal sites. Benefiting from strong interfacial coupling, enhanced charge transport, and excellent hydrophilicity, the Fe-NiO/NiSe<sub>2</sub> heterostructure delivers exceptional OER property with an overpotential of 251 mV at 10 mA cm<sup>−2</sup>, surpassing commercial RuO<sub>2</sub>. Furthermore, the Pt/C||Fe-NiO/NiSe<sub>2</sub> electrolyzer demonstrates remarkable overall-water-splitting performance and can working over 100 h continuous period. This work can provide a promising approach for the design and construction of heterointerfacial architectures.</div></div>","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"698 ","pages":"Article 163087"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169433225008013","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Exploring high-efficiency non-precious metal-based electrocatalysts for the oxygen evolution reaction (OER) is pivotal to unlock sustainable hydrogen production through water electrolysis. Herein, we engineered iron-doped NiO/NiSe2 (Fe-NiO/NiSe2) heterostructured catalysts via a two-step solvothermal synthesis and low-temperature selenization. Simply control of calcination conditions enables regulated metal reduction/selenization, thereby tailoring different crystallographic phase and heterointerface formation. Density functional theory (DFT) calculations reveal that oxide/selenide heterointerfaces induce interfacial electron redistribution, reducing bandgap. Concurrently, heterointerface effects upshift d-band center positions compared with Fe-NiO, enhancing the reactivity of metal sites. Benefiting from strong interfacial coupling, enhanced charge transport, and excellent hydrophilicity, the Fe-NiO/NiSe2 heterostructure delivers exceptional OER property with an overpotential of 251 mV at 10 mA cm−2, surpassing commercial RuO2. Furthermore, the Pt/C||Fe-NiO/NiSe2 electrolyzer demonstrates remarkable overall-water-splitting performance and can working over 100 h continuous period. This work can provide a promising approach for the design and construction of heterointerfacial architectures.

Abstract Image

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信