Cross Helicity and the Helium Abundance as an In Situ Metric of Solar Wind Acceleration

B. L. Alterman and Raffaella D’Amicis
{"title":"Cross Helicity and the Helium Abundance as an In Situ Metric of Solar Wind Acceleration","authors":"B. L. Alterman and Raffaella D’Amicis","doi":"10.3847/2041-8213/adb48e","DOIUrl":null,"url":null,"abstract":"The two-state solar wind paradigm is based on observations showing that slow and fast solar wind have distinct properties like helium abundances, kinetic signatures, elemental composition, and charge-state ratios. Nominally, the fast wind originates from solar sources that are continuously magnetically open to the heliosphere like coronal holes while the slow wind is from solar sources that are only intermittently open to the heliosphere like helmet streamers and pseudostreamers. The Alfvénic slow wind is an emerging third class of solar wind that challenges the two-state fast/slow paradigm. It has slow wind speeds but is highly Alfvénic, i.e., has a high correlation between velocity and magnetic field fluctuations along with low compressibility typical of Alfvén waves, which is typically observed in fast wind. Its other properties are also more similar to the fast than slow wind. From 28 yr of Wind observations at 1 au, we derive the solar wind helium abundance (AHe), Alfvénicity (∣σc∣), and solar wind speed (vsw). Characterizing vsw as a function of ∣σc∣ and AHe, we show that the maximum solar wind speed for plasma accelerated in source regions that are intermittently open is faster than the minimum solar wind speed for plasma accelerated in continuously open regions. We infer that the Alfvénic slow wind is likely solar wind originating from open field regions with speeds below the maximum solar wind speed for plasma from intermittently open regions. We then discuss possible implications for solar wind acceleration. Finally, we utilize the combination of helium abundance and normalized cross helicity to present a novel solar wind categorization scheme that illustrates the transition in observations of solar wind at 1 au from magnetically closed to magnetically open sources.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"72 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/adb48e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The two-state solar wind paradigm is based on observations showing that slow and fast solar wind have distinct properties like helium abundances, kinetic signatures, elemental composition, and charge-state ratios. Nominally, the fast wind originates from solar sources that are continuously magnetically open to the heliosphere like coronal holes while the slow wind is from solar sources that are only intermittently open to the heliosphere like helmet streamers and pseudostreamers. The Alfvénic slow wind is an emerging third class of solar wind that challenges the two-state fast/slow paradigm. It has slow wind speeds but is highly Alfvénic, i.e., has a high correlation between velocity and magnetic field fluctuations along with low compressibility typical of Alfvén waves, which is typically observed in fast wind. Its other properties are also more similar to the fast than slow wind. From 28 yr of Wind observations at 1 au, we derive the solar wind helium abundance (AHe), Alfvénicity (∣σc∣), and solar wind speed (vsw). Characterizing vsw as a function of ∣σc∣ and AHe, we show that the maximum solar wind speed for plasma accelerated in source regions that are intermittently open is faster than the minimum solar wind speed for plasma accelerated in continuously open regions. We infer that the Alfvénic slow wind is likely solar wind originating from open field regions with speeds below the maximum solar wind speed for plasma from intermittently open regions. We then discuss possible implications for solar wind acceleration. Finally, we utilize the combination of helium abundance and normalized cross helicity to present a novel solar wind categorization scheme that illustrates the transition in observations of solar wind at 1 au from magnetically closed to magnetically open sources.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信