Claudio C. Claros, Melissa N. Anderson, Wei Qian, Austin J. Brockmeier, Thomas A. Buckley
{"title":"A Machine Learning Model for Post-Concussion Musculoskeletal Injury Risk in Collegiate Athletes","authors":"Claudio C. Claros, Melissa N. Anderson, Wei Qian, Austin J. Brockmeier, Thomas A. Buckley","doi":"10.1007/s40279-025-02196-4","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background</h3><p>Emerging evidence indicates an elevated risk of post-concussion musculoskeletal injuries in collegiate athletes; however, identifying athletes at highest risk remains to be elucidated.</p><h3 data-test=\"abstract-sub-heading\">Objective</h3><p>The purpose of this study was to model post-concussion musculoskeletal injury risk in collegiate athletes by integrating a comprehensive set of variables by machine learning.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>A risk model was developed and tested on a dataset of 194 athletes (155 in the training set and 39 in the test set) with 135 variables entered into the analysis, which included participant’s heath and athletic history, concussion injury and recovery-specific criteria, and outcomes from a diverse array of concussion assessments. The machine learning approach involved transforming variables by the weight of evidence method, variable selection using L1-penalized logistic regression, model selection via the Akaike Information Criterion, and a final L2-regularized logistic regression fit.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>A model with 48 predictive variables yielded significant predictive performance of subsequent musculoskeletal injury with an area under the curve of 0.82. Top predictors included cognitive, balance, and reaction at baseline and acute timepoints. At a specified false-positive rate of 6.67%, the model achieves a true-positive rate (sensitivity) of 79% and a precision (positive predictive value) of 95% for identifying at-risk athletes via a well-calibrated composite risk score.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>These results support the development of a sensitive and specific injury risk model using standard data combined with a novel methodological approach that may allow clinicians to target high injury risk student athletes. The development and refinement of predictive models, incorporating machine learning and utilizing comprehensive datasets, could lead to improved identification of high-risk athletes and allow for the implementation of targeted injury risk reduction strategies by identifying student athletes most at risk for post-concussion musculoskeletal injury.</p>","PeriodicalId":21969,"journal":{"name":"Sports Medicine","volume":"55 1","pages":""},"PeriodicalIF":9.3000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s40279-025-02196-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Emerging evidence indicates an elevated risk of post-concussion musculoskeletal injuries in collegiate athletes; however, identifying athletes at highest risk remains to be elucidated.
Objective
The purpose of this study was to model post-concussion musculoskeletal injury risk in collegiate athletes by integrating a comprehensive set of variables by machine learning.
Methods
A risk model was developed and tested on a dataset of 194 athletes (155 in the training set and 39 in the test set) with 135 variables entered into the analysis, which included participant’s heath and athletic history, concussion injury and recovery-specific criteria, and outcomes from a diverse array of concussion assessments. The machine learning approach involved transforming variables by the weight of evidence method, variable selection using L1-penalized logistic regression, model selection via the Akaike Information Criterion, and a final L2-regularized logistic regression fit.
Results
A model with 48 predictive variables yielded significant predictive performance of subsequent musculoskeletal injury with an area under the curve of 0.82. Top predictors included cognitive, balance, and reaction at baseline and acute timepoints. At a specified false-positive rate of 6.67%, the model achieves a true-positive rate (sensitivity) of 79% and a precision (positive predictive value) of 95% for identifying at-risk athletes via a well-calibrated composite risk score.
Conclusions
These results support the development of a sensitive and specific injury risk model using standard data combined with a novel methodological approach that may allow clinicians to target high injury risk student athletes. The development and refinement of predictive models, incorporating machine learning and utilizing comprehensive datasets, could lead to improved identification of high-risk athletes and allow for the implementation of targeted injury risk reduction strategies by identifying student athletes most at risk for post-concussion musculoskeletal injury.
期刊介绍:
Sports Medicine focuses on providing definitive and comprehensive review articles that interpret and evaluate current literature, aiming to offer insights into research findings in the sports medicine and exercise field. The journal covers major topics such as sports medicine and sports science, medical syndromes associated with sport and exercise, clinical medicine's role in injury prevention and treatment, exercise for rehabilitation and health, and the application of physiological and biomechanical principles to specific sports.
Types of Articles:
Review Articles: Definitive and comprehensive reviews that interpret and evaluate current literature to provide rationale for and application of research findings.
Leading/Current Opinion Articles: Overviews of contentious or emerging issues in the field.
Original Research Articles: High-quality research articles.
Enhanced Features: Additional features like slide sets, videos, and animations aimed at increasing the visibility, readership, and educational value of the journal's content.
Plain Language Summaries: Summaries accompanying articles to assist readers in understanding important medical advances.
Peer Review Process:
All manuscripts undergo peer review by international experts to ensure quality and rigor. The journal also welcomes Letters to the Editor, which will be considered for publication.