Keratin-72 restricts HIV-1 infection in resting CD4+ T cells by sequestering capsids in intermediate filaments

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yang He, Meng Xu, Jiayue Ouyang, Li Zhao, Tiankui Ma, Xiaowei Zhang, Ruolin Wang, Hong Shang, Guoxin Liang
{"title":"Keratin-72 restricts HIV-1 infection in resting CD4+ T cells by sequestering capsids in intermediate filaments","authors":"Yang He, Meng Xu, Jiayue Ouyang, Li Zhao, Tiankui Ma, Xiaowei Zhang, Ruolin Wang, Hong Shang, Guoxin Liang","doi":"10.1038/s41467-025-58218-2","DOIUrl":null,"url":null,"abstract":"<p>The accessory protein Vpx from the red-capped mangabey or mandrill SIV (SIV<sub>rcm/mnd-2</sub>) lineage has been reported to increase HIV-1 infection in resting CD4<sup>+</sup> T cells without affecting SAMHD1, a known target of Vpx in HIV-1 infection. This indicates that Vpx, in addition to SAMHD1, circumvents other restriction factors for lentiviruses. To identify potential restriction factors, this study examined cellular proteins interacting with Vpx<sub>rcm</sub> and found that keratin-72 (KRT72), an intermediate filament (IF) protein expressed in resting CD4<sup>+</sup> T cells, is a host antiviral factor targeted by Vpx. Vpx<sub>rcm/mnd-2</sub> lineages could strongly promote KRT72 degradation, resulting in increased HIV-1 infection in resting CD4<sup>+</sup> T cells. We discovered that KRT72 restricts HIV-1 replication by sequestering incoming HIV-1 capsids in cytoplasmic IFs. With KRT72, the capsid cores of HIV-1 become attached to IFs, and their trafficking toward the nucleus is inhibited. In contrast, without KRT72, HIV-1 capsids are transported to the nucleus, leading to high levels of integrated HIV-1 DNA. Thus, KRT72 is a Vpx-counteracted antiviral factor that binds the incoming capsids to cytoplasmic IFs, restricting HIV-1 infection in resting CD4<sup>+</sup> T cells.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"11 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58218-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The accessory protein Vpx from the red-capped mangabey or mandrill SIV (SIVrcm/mnd-2) lineage has been reported to increase HIV-1 infection in resting CD4+ T cells without affecting SAMHD1, a known target of Vpx in HIV-1 infection. This indicates that Vpx, in addition to SAMHD1, circumvents other restriction factors for lentiviruses. To identify potential restriction factors, this study examined cellular proteins interacting with Vpxrcm and found that keratin-72 (KRT72), an intermediate filament (IF) protein expressed in resting CD4+ T cells, is a host antiviral factor targeted by Vpx. Vpxrcm/mnd-2 lineages could strongly promote KRT72 degradation, resulting in increased HIV-1 infection in resting CD4+ T cells. We discovered that KRT72 restricts HIV-1 replication by sequestering incoming HIV-1 capsids in cytoplasmic IFs. With KRT72, the capsid cores of HIV-1 become attached to IFs, and their trafficking toward the nucleus is inhibited. In contrast, without KRT72, HIV-1 capsids are transported to the nucleus, leading to high levels of integrated HIV-1 DNA. Thus, KRT72 is a Vpx-counteracted antiviral factor that binds the incoming capsids to cytoplasmic IFs, restricting HIV-1 infection in resting CD4+ T cells.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信