{"title":"Enhancing haptic continuity in virtual reality using a continuity reinforcement skeleton","authors":"Xinyuan Wang, Zhiqiang Meng, Chang Qing Chen","doi":"10.1038/s41467-025-58318-z","DOIUrl":null,"url":null,"abstract":"<p>Haptic displays are crucial for facilitating an immersive experience within virtual reality. However, when displaying continuous movements of contact, such as stroking and exploration, pixel-based haptic devices suffer from losing haptic information between pixels, leading to discontinuity. The trade-off between the travel distance of haptic elements and their pixel size in thin wearable devices hinders solutions that solely rely on increasing pixel density. Here we introduce a continuity reinforcement skeleton, which employs physically driven interpolation to enhance haptic information. This design enables the off-plane displacement to move conformally and display haptic information between pixel gaps. Efforts are made to quantify haptic display quality using geometric, mechanical, and psychological criteria. The development and integration of one-dimensional, two-dimensional, and curved haptic devices with virtual reality systems highlight the impact of the continuity reinforcement skeleton on haptic display, showcasing its potential for improving haptic experience.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"183 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58318-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Haptic displays are crucial for facilitating an immersive experience within virtual reality. However, when displaying continuous movements of contact, such as stroking and exploration, pixel-based haptic devices suffer from losing haptic information between pixels, leading to discontinuity. The trade-off between the travel distance of haptic elements and their pixel size in thin wearable devices hinders solutions that solely rely on increasing pixel density. Here we introduce a continuity reinforcement skeleton, which employs physically driven interpolation to enhance haptic information. This design enables the off-plane displacement to move conformally and display haptic information between pixel gaps. Efforts are made to quantify haptic display quality using geometric, mechanical, and psychological criteria. The development and integration of one-dimensional, two-dimensional, and curved haptic devices with virtual reality systems highlight the impact of the continuity reinforcement skeleton on haptic display, showcasing its potential for improving haptic experience.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.