Francesco Perciavalle, Davide Rossini, Juan Polo and Luigi Amico
{"title":"Extractable energy from quantum superposition of current states","authors":"Francesco Perciavalle, Davide Rossini, Juan Polo and Luigi Amico","doi":"10.1088/2058-9565/adbf45","DOIUrl":null,"url":null,"abstract":"We explore the energy content of superpositions of single-excitation current states. Specifically, we focus on the maximum energy that can be extracted from them through local unitary transformations. The figure of merit we employ is the local ergotropy. We consider an XY spin-chain model and perform a complete analysis in the whole range of the system parameters. This way, we prove that superpositions of two current states in spatially closed spin networks are characterized by specific peaks in extractable energy, generally overcoming the ergotropy of each of the two separate current states characterized by a single winding number. The many-body state dynamics entails to ergotropy evolving in a controlled fashion. The implementation we suggest is based on a Rydberg-atom platform. Optimal transformations able to extract locally the maximum possible amount of energy are sorted out.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"183 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/adbf45","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We explore the energy content of superpositions of single-excitation current states. Specifically, we focus on the maximum energy that can be extracted from them through local unitary transformations. The figure of merit we employ is the local ergotropy. We consider an XY spin-chain model and perform a complete analysis in the whole range of the system parameters. This way, we prove that superpositions of two current states in spatially closed spin networks are characterized by specific peaks in extractable energy, generally overcoming the ergotropy of each of the two separate current states characterized by a single winding number. The many-body state dynamics entails to ergotropy evolving in a controlled fashion. The implementation we suggest is based on a Rydberg-atom platform. Optimal transformations able to extract locally the maximum possible amount of energy are sorted out.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.