Xuan Zhang, Ji Young Lee, Jonathan Pacheco, Ieva Sutkeviciute, Anju Krishnan Anitha, Heng Liu, Stephanie Singh, Carlos Ventura, Sofya Savransky, Ashok Khatri, Cheng Zhang, Ivet Bahar, Jean-Pierre Vilardaga
{"title":"Allosteric mechanism in the distinctive coupling of G q and G s to the parathyroid hormone type 1 receptor","authors":"Xuan Zhang, Ji Young Lee, Jonathan Pacheco, Ieva Sutkeviciute, Anju Krishnan Anitha, Heng Liu, Stephanie Singh, Carlos Ventura, Sofya Savransky, Ashok Khatri, Cheng Zhang, Ivet Bahar, Jean-Pierre Vilardaga","doi":"10.1073/pnas.2426178122","DOIUrl":null,"url":null,"abstract":"The mechanism determining the preferential stimulation of one heterotrimeric G protein signaling pathway over another by a ligand remains undetermined. By reporting the cryogenic electron microscopy (cryo-EM) structure of the parathyroid hormone (PTH) type 1 receptor (PTH1R) complexed with Gq and comparing its allosteric dynamics with that of PTH1R in complex with G <jats:sub>s</jats:sub> , we uncover a mechanism underlying such preferences. We show that an allosteric coupling between the ligand PTH and the C-terminal helix α5 of the Gα subunit controls the stability of the PTH1R complex with the specific G protein, G <jats:sub>s</jats:sub> or G <jats:sub>q</jats:sub> . Single-cell-level experiments further validate the G protein–selective effects of the PTH binding pose by demonstrating the differential, G protein–dependent residence times and affinity of this ligand at the PTH1R binding site. The findings deepen our understanding of the selective coupling of PTH1R to G <jats:sub>s</jats:sub> or G <jats:sub>q</jats:sub> and how it relates to the stability and kinetics of ligand binding. They explain the observed variability in the ligand-binding affinity of a GPCR when coupled to different G proteins.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"10 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2426178122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The mechanism determining the preferential stimulation of one heterotrimeric G protein signaling pathway over another by a ligand remains undetermined. By reporting the cryogenic electron microscopy (cryo-EM) structure of the parathyroid hormone (PTH) type 1 receptor (PTH1R) complexed with Gq and comparing its allosteric dynamics with that of PTH1R in complex with G s , we uncover a mechanism underlying such preferences. We show that an allosteric coupling between the ligand PTH and the C-terminal helix α5 of the Gα subunit controls the stability of the PTH1R complex with the specific G protein, G s or G q . Single-cell-level experiments further validate the G protein–selective effects of the PTH binding pose by demonstrating the differential, G protein–dependent residence times and affinity of this ligand at the PTH1R binding site. The findings deepen our understanding of the selective coupling of PTH1R to G s or G q and how it relates to the stability and kinetics of ligand binding. They explain the observed variability in the ligand-binding affinity of a GPCR when coupled to different G proteins.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.