Comparison of methods for assessing fungi-to-bacteria ratio of soil

IF 5.1 1区 农林科学 Q1 SOIL SCIENCE
Miikka B. Laine, Sami J. Taipale, Marja Tiirola
{"title":"Comparison of methods for assessing fungi-to-bacteria ratio of soil","authors":"Miikka B. Laine, Sami J. Taipale, Marja Tiirola","doi":"10.1007/s00374-025-01911-7","DOIUrl":null,"url":null,"abstract":"<p>Measuring bacterial and fungal biomass may offer insights into agroecosystem health. Nevertheless, few studies have directly compared the ability of different methods to assess the abundance of these two microbial groups and their ratio (F/B ratio). This study compared the ability, precision, and repeatability of three commonly used laboratory methods - phospholipid fatty acid (PLFA) analysis, quantitative PCR (qPCR), and droplet-digital PCR (ddPCR) - alongside a commercially available microbial carbon testing tool (microBIOMETER<sup>®</sup>), to assess the F/B ratio and microbial abundance in agroecosystem soils. We also reviewed recent literature on common measurement and reporting practices. PLFA and ddPCR provided the most reliable outcomes, with PLFA being the most precise, repeatable, and widely used (81% of reviewed studies). However, significant variability in analytical procedures exists between laboratories, and key details, such as storage conditions, are often underreported. MicroBIOMETER<sup>®</sup> can offer a low-cost option for assessing total microbial biomass, but did not match PLFA results in determining the F/B ratio. ddPCR offered better precision than qPCR but had a narrower dynamic range. Therefore, optimal approach is to use the two methods in parallel. In conclusion, we recommend future studies adopt PLFA analysis as the primary method for assessing microbial abundance and F/B ratio of soils, as PCR-based measurements are influenced by several unavoidable biases. Furthermore, we suggest improvements to the PLFA method to ensure more reliable comparisons across laboratories. Altogether, our study gives guidelines for improving the monitoring of F/B ratio and microbial abundance in agroecosystems.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"18 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology and Fertility of Soils","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00374-025-01911-7","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Measuring bacterial and fungal biomass may offer insights into agroecosystem health. Nevertheless, few studies have directly compared the ability of different methods to assess the abundance of these two microbial groups and their ratio (F/B ratio). This study compared the ability, precision, and repeatability of three commonly used laboratory methods - phospholipid fatty acid (PLFA) analysis, quantitative PCR (qPCR), and droplet-digital PCR (ddPCR) - alongside a commercially available microbial carbon testing tool (microBIOMETER®), to assess the F/B ratio and microbial abundance in agroecosystem soils. We also reviewed recent literature on common measurement and reporting practices. PLFA and ddPCR provided the most reliable outcomes, with PLFA being the most precise, repeatable, and widely used (81% of reviewed studies). However, significant variability in analytical procedures exists between laboratories, and key details, such as storage conditions, are often underreported. MicroBIOMETER® can offer a low-cost option for assessing total microbial biomass, but did not match PLFA results in determining the F/B ratio. ddPCR offered better precision than qPCR but had a narrower dynamic range. Therefore, optimal approach is to use the two methods in parallel. In conclusion, we recommend future studies adopt PLFA analysis as the primary method for assessing microbial abundance and F/B ratio of soils, as PCR-based measurements are influenced by several unavoidable biases. Furthermore, we suggest improvements to the PLFA method to ensure more reliable comparisons across laboratories. Altogether, our study gives guidelines for improving the monitoring of F/B ratio and microbial abundance in agroecosystems.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biology and Fertility of Soils
Biology and Fertility of Soils 农林科学-土壤科学
CiteScore
11.80
自引率
10.80%
发文量
62
审稿时长
2.2 months
期刊介绍: Biology and Fertility of Soils publishes in English original papers, reviews and short communications on all fundamental and applied aspects of biology – microflora and microfauna - and fertility of soils. It offers a forum for research aimed at broadening the understanding of biological functions, processes and interactions in soils, particularly concerning the increasing demands of agriculture, deforestation and industrialization. The journal includes articles on techniques and methods that evaluate processes, biogeochemical interactions and ecological stresses, and sometimes presents special issues on relevant topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信