Taurine priming improves redox balance, osmotic adjustment, and nutrient acquisition to lessen phytotoxic effects of neutral and alkaline salts on pea (Pisum sativum L.).

Plant signaling & behavior Pub Date : 2025-12-01 Epub Date: 2025-03-25 DOI:10.1080/15592324.2025.2480224
Umer Farooq, Ayesha Rehman, Muhammad Arslan Ashraf, Rizwan Rasheed, Mudassar Shahid, Shafaqat Ali, Pallab K Sarker
{"title":"Taurine priming improves redox balance, osmotic adjustment, and nutrient acquisition to lessen phytotoxic effects of neutral and alkaline salts on pea (<i>Pisum sativum</i> L.).","authors":"Umer Farooq, Ayesha Rehman, Muhammad Arslan Ashraf, Rizwan Rasheed, Mudassar Shahid, Shafaqat Ali, Pallab K Sarker","doi":"10.1080/15592324.2025.2480224","DOIUrl":null,"url":null,"abstract":"<p><p>Taurine (TAR) intricately mediates a plethora of physiological processes. This investigation aimed to elucidate the impact of TAR (50, 100, 150, and 200 mg L<sup>-1</sup>) seed priming on redox homeostasis, glutathione metabolism, photosynthetic efficiency, osmotic adjustment and nutrient acquisition in pea plants subjected to 100 mm salinity of neutral (NaCl and Na<sub>2</sub>SO<sub>4</sub>) and alkaline (Na<sub>2</sub>CO<sub>3</sub>) salts. Salinity diminished growth, chlorophyll, and photosynthetic efficiency alongside a concurrent rise in reactive oxygen species (ROS), lipid peroxidation, and relative membrane permeability. Seed priming with 150 mg L<sup>-1</sup> TAR efficiently enhanced growth by reducing oxidative damage to plants under salinity. Taurine enhanced leaf relative water content through osmotic adjustment facilitated by the induced accumulation of proline, glycine betaine, soluble sugars, and total free amino acids. Taurine increased the levels of antioxidant compounds and the activities of enzymes, which assisted in the detoxification of ROS and methylglyoxal. Taurine maintained chlorophyll integrity and enhanced photosynthetic efficiency by alleviating oxidative stress. Taurine diminished Na content, which improved the acquisition of essential nutrients under the salinity of neutral and alkaline salts. The results suggest that TAR has a potential role in maintaining ion homeostasis, crucial for enhancing pea tolerance to salt stress.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"20 1","pages":"2480224"},"PeriodicalIF":0.0000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11938318/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant signaling & behavior","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15592324.2025.2480224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/25 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Taurine (TAR) intricately mediates a plethora of physiological processes. This investigation aimed to elucidate the impact of TAR (50, 100, 150, and 200 mg L-1) seed priming on redox homeostasis, glutathione metabolism, photosynthetic efficiency, osmotic adjustment and nutrient acquisition in pea plants subjected to 100 mm salinity of neutral (NaCl and Na2SO4) and alkaline (Na2CO3) salts. Salinity diminished growth, chlorophyll, and photosynthetic efficiency alongside a concurrent rise in reactive oxygen species (ROS), lipid peroxidation, and relative membrane permeability. Seed priming with 150 mg L-1 TAR efficiently enhanced growth by reducing oxidative damage to plants under salinity. Taurine enhanced leaf relative water content through osmotic adjustment facilitated by the induced accumulation of proline, glycine betaine, soluble sugars, and total free amino acids. Taurine increased the levels of antioxidant compounds and the activities of enzymes, which assisted in the detoxification of ROS and methylglyoxal. Taurine maintained chlorophyll integrity and enhanced photosynthetic efficiency by alleviating oxidative stress. Taurine diminished Na content, which improved the acquisition of essential nutrients under the salinity of neutral and alkaline salts. The results suggest that TAR has a potential role in maintaining ion homeostasis, crucial for enhancing pea tolerance to salt stress.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信