{"title":"Individualized cerebellar damage predicts the presence of behavioral disorders in children with brainstem tumors.","authors":"Heyuan Jia, Kaikai Wang, Mingxin Zhang, Guocan Gu, Yiying Mai, Xia Wu, Congying Chu, Xuntao Yin, Peng Zhang, Lingzhong Fan, Liwei Zhang","doi":"10.1038/s43856-025-00810-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Brainstem tumors often cause intractable neurobehavioral issues, which can be a challenge for patients and surgeons. Research on cerebellar changes in these patients is limited, despite symptoms similar to cerebellar injuries. This study aims to investigate cerebellar damage pattern resulting from brainstem tumors and its association with behavioral disorders.</p><p><strong>Methods: </strong>This study enrolled 147 children with brainstem tumors. A U-Net-based segmentation algorithm is used to divide their cerebellums into 26 lobules. And these lobules are then used to build a normative model for assessing individual structural deviations. Furthermore, a behavior prediction model is developed using the total outlier count (tOC) index and cerebellar lobule volume as predictive features.</p><p><strong>Results: </strong>Over 95% of patients are found to have negative deviations in cerebellar regions, particularly in anterior lobules like Left V. Higher tOC is significantly associated with severe social problems (r = 0.31, p = 0.001) and withdrawal behavior (r = 0.28, p = 0.001). Smaller size of cerebellar regions strongly correlates with more pronounced social problems (r = 0.27, p = 0.007) and withdrawal behavior (r = 0.25, p = 0.015). Notably, lobules Right X, V, IV, VIIB, Left IX, VIII, and X influence social problems, while Left V, Right IV, Vermis VI, and VIII impact withdrawal behavior.</p><p><strong>Conclusions: </strong>Our study reveals cerebellar damage patterns in patients with brainstem tumors, emphasizing the role of both anterior and posterior cerebellar lobes in social problems and withdrawal behavior. This research sheds light on the cerebro-brainstem-cerebellar underlying complex behavioral disorders in brainstem tumor patients.</p>","PeriodicalId":72646,"journal":{"name":"Communications medicine","volume":"5 1","pages":"91"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11937406/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43856-025-00810-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Brainstem tumors often cause intractable neurobehavioral issues, which can be a challenge for patients and surgeons. Research on cerebellar changes in these patients is limited, despite symptoms similar to cerebellar injuries. This study aims to investigate cerebellar damage pattern resulting from brainstem tumors and its association with behavioral disorders.
Methods: This study enrolled 147 children with brainstem tumors. A U-Net-based segmentation algorithm is used to divide their cerebellums into 26 lobules. And these lobules are then used to build a normative model for assessing individual structural deviations. Furthermore, a behavior prediction model is developed using the total outlier count (tOC) index and cerebellar lobule volume as predictive features.
Results: Over 95% of patients are found to have negative deviations in cerebellar regions, particularly in anterior lobules like Left V. Higher tOC is significantly associated with severe social problems (r = 0.31, p = 0.001) and withdrawal behavior (r = 0.28, p = 0.001). Smaller size of cerebellar regions strongly correlates with more pronounced social problems (r = 0.27, p = 0.007) and withdrawal behavior (r = 0.25, p = 0.015). Notably, lobules Right X, V, IV, VIIB, Left IX, VIII, and X influence social problems, while Left V, Right IV, Vermis VI, and VIII impact withdrawal behavior.
Conclusions: Our study reveals cerebellar damage patterns in patients with brainstem tumors, emphasizing the role of both anterior and posterior cerebellar lobes in social problems and withdrawal behavior. This research sheds light on the cerebro-brainstem-cerebellar underlying complex behavioral disorders in brainstem tumor patients.