{"title":"Fusion of score-differencing and response similarity statistics for detecting examinees with item preknowledge.","authors":"Yongze Xu, Ruihang He, Meiwei Huang, Fang Luo","doi":"10.1111/bmsp.12388","DOIUrl":null,"url":null,"abstract":"<p><p>Item preknowledge (IP) is a prevalent form of test fraud in educational assessment that can compromise test validity. Two common methods for detecting examinees with IP are score-differencing statistics and response similarity index (RSI). These statistics have different applications and respective advantages. In this paper, we propose a new method (Joint Survival Function Method, <math> <semantics><mrow><mtext>JSFM</mtext></mrow> <annotation>$$ \\mathrm{JSFM} $$</annotation></semantics> </math> ) to combine these two types of statistics to calculate a fusion statistic that tries to address the issue of distribution differences between the original indicators. By combining the advantages of the original indicators, the fusion statistic can more effectively detect examinees with IP. We fused two typical RSI and four typical score-differencing statistics using different methods and compared their performance. The results demonstrate that the proposed <math> <semantics><mrow><mtext>JSFM</mtext></mrow> <annotation>$$ \\mathrm{JSFM} $$</annotation></semantics> </math> exhibits strong cross-scenario stability and performs better than other fusion methods.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Mathematical & Statistical Psychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/bmsp.12388","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Item preknowledge (IP) is a prevalent form of test fraud in educational assessment that can compromise test validity. Two common methods for detecting examinees with IP are score-differencing statistics and response similarity index (RSI). These statistics have different applications and respective advantages. In this paper, we propose a new method (Joint Survival Function Method, ) to combine these two types of statistics to calculate a fusion statistic that tries to address the issue of distribution differences between the original indicators. By combining the advantages of the original indicators, the fusion statistic can more effectively detect examinees with IP. We fused two typical RSI and four typical score-differencing statistics using different methods and compared their performance. The results demonstrate that the proposed exhibits strong cross-scenario stability and performs better than other fusion methods.
期刊介绍:
The British Journal of Mathematical and Statistical Psychology publishes articles relating to areas of psychology which have a greater mathematical or statistical aspect of their argument than is usually acceptable to other journals including:
• mathematical psychology
• statistics
• psychometrics
• decision making
• psychophysics
• classification
• relevant areas of mathematics, computing and computer software
These include articles that address substantitive psychological issues or that develop and extend techniques useful to psychologists. New models for psychological processes, new approaches to existing data, critiques of existing models and improved algorithms for estimating the parameters of a model are examples of articles which may be favoured.