Zebrafish (Danio rerio) Prefer Undisturbed Shoals over Shoals Exposed to the Synthetic Alarm Substance Hypoxanthine-3N-oxide (C5H4N4O2).

IF 3.6 3区 生物学 Q1 BIOLOGY
Andrew Velkey, Kaitlyn Kinslow, Megan Bowers, Ethan Hoffman, Jamie Martin, Bandhavi Surisetty
{"title":"Zebrafish (<i>Danio rerio</i>) Prefer Undisturbed Shoals over Shoals Exposed to the Synthetic Alarm Substance Hypoxanthine-3N-oxide (C<sub>5</sub>H<sub>4</sub>N<sub>4</sub>O<sub>2</sub>).","authors":"Andrew Velkey, Kaitlyn Kinslow, Megan Bowers, Ethan Hoffman, Jamie Martin, Bandhavi Surisetty","doi":"10.3390/biology14030233","DOIUrl":null,"url":null,"abstract":"<p><p>As an anti-predation behavior, shoaling enhances survival among prey species by reducing individual predation risk through mechanisms like the dilution effect and collective vigilance. Zebrafish-a highly social and genetically tractable species-are valuable for studying these behaviors. The present study examined zebrafish's social preferences in a 3-chamber open-tank free-swim task, assessing whether visual cues alone could distinguish between an intact and an alarmed shoal exposed to the synthetic alarm substance H3NO. Subjects were allowed to freely associate with either shoal while their behaviors were recorded and analyzed. The results reveal a significant preference for proximity to the intact shoal, indicating zebrafish's ability to visually discern threat levels. Subjects spent nearly twice as much time in the zone near the intact shoal, with reduced freezing and faster movement velocities compared to the alarmed shoal zone. Males exhibited more freezing behavior than females, consistent with sex-specific strategies in threat response. These findings underscore zebrafish's reliance on visual cues for social responding under predatory threat and highlight sex-based differences in threat perception. This research expands the understanding of zebrafish's social dynamics and provides a robust framework for future exploration of the neural mechanisms underlying social behavior and threat assessment in zebrafish.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 3","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939818/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology14030233","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

As an anti-predation behavior, shoaling enhances survival among prey species by reducing individual predation risk through mechanisms like the dilution effect and collective vigilance. Zebrafish-a highly social and genetically tractable species-are valuable for studying these behaviors. The present study examined zebrafish's social preferences in a 3-chamber open-tank free-swim task, assessing whether visual cues alone could distinguish between an intact and an alarmed shoal exposed to the synthetic alarm substance H3NO. Subjects were allowed to freely associate with either shoal while their behaviors were recorded and analyzed. The results reveal a significant preference for proximity to the intact shoal, indicating zebrafish's ability to visually discern threat levels. Subjects spent nearly twice as much time in the zone near the intact shoal, with reduced freezing and faster movement velocities compared to the alarmed shoal zone. Males exhibited more freezing behavior than females, consistent with sex-specific strategies in threat response. These findings underscore zebrafish's reliance on visual cues for social responding under predatory threat and highlight sex-based differences in threat perception. This research expands the understanding of zebrafish's social dynamics and provides a robust framework for future exploration of the neural mechanisms underlying social behavior and threat assessment in zebrafish.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biology-Basel
Biology-Basel Biological Science-Biological Science
CiteScore
5.70
自引率
4.80%
发文量
1618
审稿时长
11 weeks
期刊介绍: Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信