{"title":"The Evolution of Nutrient and Microbial Composition and Maturity During the Composting of Different Plant-Derived Wastes.","authors":"Yuxin Xie, Pengbing Wu, Ying Qu, Xingchi Guo, Junyan Zheng, Yuhe Xing, Xu Zhang, Qian Liu","doi":"10.3390/biology14030268","DOIUrl":null,"url":null,"abstract":"<p><p>Composting is an environmentally friendly treatment technology that recycles and sanitizes organic solid waste. This study aimed to assess the evolution of nutrients, maturity, and microbial communities during the composting of different plant-derived wastes. The composting process was conducted over 49 days using three types of plant-derived waste: wheat bran (WB), peanut straw (PS), and poplar leaf litter (PL). This process was examined through physical, chemical, and biological parameters. The results revealed that after 49 days of composting, the three groups experienced significant changes. They were odorless, were insect-free, exhibited a dark brown color, had an alkaline pH value, and had an electrical conductivity (EC) value of less than 4 mS/cm. These characteristics indicated that they had reached maturity. Nutrient content was the most significant factor influencing the degree of humification of the different composting materials, while changes in microbial community diversity were the key driving factors. Significantly, the compost PS, derived from peanut straw, entered the thermophilic phase first, and by the end of composting, it had the lowest organic matter (OM) loss rate (17.4%), with increases in total nitrogen (TN), total phosphorus (TP), and total potassium (TK) in the order of PS > PL > WB. The increase in humus carbon (HSC) content and the humic acid/fulvic acid (HA/FA) ratio followed the order PS > WB > PL. FTIR spectra indicated that PS had greater aromatic characteristics compared to the other samples. The abundance and diversity of bacterial and fungal communities in the compost increased significantly, accompanied by more complex community structures. Crucially, there were no phytotoxic effects in any of the three composting treatments, and the compost PS boasted a high germination index (GI) of 94.79%, with the lowest heavy metal contents. The findings indicate that the compost PS has the highest potential for resource utilization and is suitable for agricultural applications. Our results demonstrate that composting technology for plant-derived waste has the potential to enhance soil fertility and provide a reference for the composting treatment and resource utilization of other plant-derived waste.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 3","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940639/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology14030268","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Composting is an environmentally friendly treatment technology that recycles and sanitizes organic solid waste. This study aimed to assess the evolution of nutrients, maturity, and microbial communities during the composting of different plant-derived wastes. The composting process was conducted over 49 days using three types of plant-derived waste: wheat bran (WB), peanut straw (PS), and poplar leaf litter (PL). This process was examined through physical, chemical, and biological parameters. The results revealed that after 49 days of composting, the three groups experienced significant changes. They were odorless, were insect-free, exhibited a dark brown color, had an alkaline pH value, and had an electrical conductivity (EC) value of less than 4 mS/cm. These characteristics indicated that they had reached maturity. Nutrient content was the most significant factor influencing the degree of humification of the different composting materials, while changes in microbial community diversity were the key driving factors. Significantly, the compost PS, derived from peanut straw, entered the thermophilic phase first, and by the end of composting, it had the lowest organic matter (OM) loss rate (17.4%), with increases in total nitrogen (TN), total phosphorus (TP), and total potassium (TK) in the order of PS > PL > WB. The increase in humus carbon (HSC) content and the humic acid/fulvic acid (HA/FA) ratio followed the order PS > WB > PL. FTIR spectra indicated that PS had greater aromatic characteristics compared to the other samples. The abundance and diversity of bacterial and fungal communities in the compost increased significantly, accompanied by more complex community structures. Crucially, there were no phytotoxic effects in any of the three composting treatments, and the compost PS boasted a high germination index (GI) of 94.79%, with the lowest heavy metal contents. The findings indicate that the compost PS has the highest potential for resource utilization and is suitable for agricultural applications. Our results demonstrate that composting technology for plant-derived waste has the potential to enhance soil fertility and provide a reference for the composting treatment and resource utilization of other plant-derived waste.
期刊介绍:
Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.