Targeting Atherosclerosis via NEDD4L Signaling-A Review of the Current Literature.

IF 3.6 3区 生物学 Q1 BIOLOGY
Lucas Fornari Laurindo, Victória Dogani Rodrigues, Enzo Pereira de Lima, Beatriz Leme Boaro, Julia Maria Mendes Peloi, Raquel Cristina Ferraroni Sanches, Cláudia Rucco Penteado Detregiachi, Ricardo José Tofano, Maria Angelica Miglino, Katia Portero Sloan, Lance Alan Sloan, Sandra Maria Barbalho
{"title":"Targeting Atherosclerosis via NEDD4L Signaling-A Review of the Current Literature.","authors":"Lucas Fornari Laurindo, Victória Dogani Rodrigues, Enzo Pereira de Lima, Beatriz Leme Boaro, Julia Maria Mendes Peloi, Raquel Cristina Ferraroni Sanches, Cláudia Rucco Penteado Detregiachi, Ricardo José Tofano, Maria Angelica Miglino, Katia Portero Sloan, Lance Alan Sloan, Sandra Maria Barbalho","doi":"10.3390/biology14030220","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiovascular diseases are the primary cause of mortality worldwide. In this scenario, atherosclerotic cardiovascular outcomes dominate since their incidence increases as populations grow and age. Atherosclerosis is a chronic inflammatory disease that affects arteries. Although its pathophysiology is heterogeneous, some genes are indissociably associated with its occurrence, and understanding their effects on the disease's occurrence could undoubtedly define effective screening and treatment strategies. One such gene is NEDD4L. The NEDD4L gene is related to ubiquitin ligase enzyme activities. It is essential to regulate vascular inflammation, atherosclerosis plaque stability, endothelial and vascular smooth cell function, and lipid metabolism, particularly in controlling cholesterol levels. However, the evidence is dubious, and no review has yet synthesized the effects of targeting NEDD4L on atherosclerosis. Therefore, our review aims to fill this gap by analyzing the literature on NEDD4L concerning atherosclerosis occurrence. To achieve this goal, we performed a systematic literature search of reputable databases, including PubMed, Google Scholar, Web of Science, Scopus, and Embase. The inclusion criteria comprised peer-reviewed original studies using in vitro and animal models due to the unavailability of relevant clinical studies. Systematic reviews, meta-analyses, and articles that did not focus on the relationship between NEDD4L and atherosclerosis and those unrelated to this health condition were excluded. Studies not written in the English language were also excluded. The search strategy included studies from January 2000 to January 2025 in the final analysis to capture recent advancements. Following screening, five studies were included. Most of the included studies underscored NEDD4L's role in increasing atherosclerosis plaque formation, but other studies indicated that stimulating NEDD4L may positively counter atherosclerosis plaque formation. Therefore, future research endeavors must address several limitations, which have been tentatively highlighted throughout the manuscript, for more informative research based on preclinical studies and to successfully translate the findings into clinical trials.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 3","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939431/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology14030220","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cardiovascular diseases are the primary cause of mortality worldwide. In this scenario, atherosclerotic cardiovascular outcomes dominate since their incidence increases as populations grow and age. Atherosclerosis is a chronic inflammatory disease that affects arteries. Although its pathophysiology is heterogeneous, some genes are indissociably associated with its occurrence, and understanding their effects on the disease's occurrence could undoubtedly define effective screening and treatment strategies. One such gene is NEDD4L. The NEDD4L gene is related to ubiquitin ligase enzyme activities. It is essential to regulate vascular inflammation, atherosclerosis plaque stability, endothelial and vascular smooth cell function, and lipid metabolism, particularly in controlling cholesterol levels. However, the evidence is dubious, and no review has yet synthesized the effects of targeting NEDD4L on atherosclerosis. Therefore, our review aims to fill this gap by analyzing the literature on NEDD4L concerning atherosclerosis occurrence. To achieve this goal, we performed a systematic literature search of reputable databases, including PubMed, Google Scholar, Web of Science, Scopus, and Embase. The inclusion criteria comprised peer-reviewed original studies using in vitro and animal models due to the unavailability of relevant clinical studies. Systematic reviews, meta-analyses, and articles that did not focus on the relationship between NEDD4L and atherosclerosis and those unrelated to this health condition were excluded. Studies not written in the English language were also excluded. The search strategy included studies from January 2000 to January 2025 in the final analysis to capture recent advancements. Following screening, five studies were included. Most of the included studies underscored NEDD4L's role in increasing atherosclerosis plaque formation, but other studies indicated that stimulating NEDD4L may positively counter atherosclerosis plaque formation. Therefore, future research endeavors must address several limitations, which have been tentatively highlighted throughout the manuscript, for more informative research based on preclinical studies and to successfully translate the findings into clinical trials.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biology-Basel
Biology-Basel Biological Science-Biological Science
CiteScore
5.70
自引率
4.80%
发文量
1618
审稿时长
11 weeks
期刊介绍: Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信