Elena Donetti, Paola Bendinelli, Margherita Correnti, Elena Gammella, Stefania Recalcati, Anita Ferraretto
{"title":"Caco2/HT-29 In Vitro Cell Co-Culture: Barrier Integrity, Permeability, and Tight Junctions' Composition During Progressive Passages of Parental Cells.","authors":"Elena Donetti, Paola Bendinelli, Margherita Correnti, Elena Gammella, Stefania Recalcati, Anita Ferraretto","doi":"10.3390/biology14030267","DOIUrl":null,"url":null,"abstract":"<p><p>Epithelial linings are crucial for the maintenance of physiological barriers. The intestinal epithelial barrier (IEB) consists of enterocytes through tight junctions and mucus-secreting cells and can undergo physiological modifications throughout life. To reproduce as closely as possible the IEB main features over time, in vitro co-cultures of Caco2/HT-29 70/30 formed by parental Caco2 and HT-29 cells sub-cultivated for more than 40 passages were set up. The measurements of the transepithelial electrical resistance (TEER) identified two populations: physiological TEER co-cultures (PC) with values > 50 Ωcm<sup>2</sup> formed by parental cells with fewer than 40 passages, and leaky TEER co-cultures (LC) with values < 50 Ωcm<sup>2</sup> formed by parental cells with more than 40 passages. In LC, paracellular permeability increased in parallel. By immunofluorescence and Western blot analysis, an increase in claudin 2 was observed in LC vs. PC, with no differences in occludin expression. MUC-2 immunoreactivity was stronger in PC than in LC. LC also showed an enhanced vulnerability to TNFα+IFN-γ. These results reproduce the main morpho-functional modifications reported in the human leaky/aged gut and support the usefulness of our in vitro cell model for studying the molecular processes underlying these modifications and testing drug/nutraceutical treatments to ameliorate leaky gut aging.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 3","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939685/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology14030267","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Epithelial linings are crucial for the maintenance of physiological barriers. The intestinal epithelial barrier (IEB) consists of enterocytes through tight junctions and mucus-secreting cells and can undergo physiological modifications throughout life. To reproduce as closely as possible the IEB main features over time, in vitro co-cultures of Caco2/HT-29 70/30 formed by parental Caco2 and HT-29 cells sub-cultivated for more than 40 passages were set up. The measurements of the transepithelial electrical resistance (TEER) identified two populations: physiological TEER co-cultures (PC) with values > 50 Ωcm2 formed by parental cells with fewer than 40 passages, and leaky TEER co-cultures (LC) with values < 50 Ωcm2 formed by parental cells with more than 40 passages. In LC, paracellular permeability increased in parallel. By immunofluorescence and Western blot analysis, an increase in claudin 2 was observed in LC vs. PC, with no differences in occludin expression. MUC-2 immunoreactivity was stronger in PC than in LC. LC also showed an enhanced vulnerability to TNFα+IFN-γ. These results reproduce the main morpho-functional modifications reported in the human leaky/aged gut and support the usefulness of our in vitro cell model for studying the molecular processes underlying these modifications and testing drug/nutraceutical treatments to ameliorate leaky gut aging.
期刊介绍:
Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.