Simulating Habitat Suitability Changes of Threadfin Porgy (Evynnis cardinalis) in the Northern South China Sea Using Ensemble Models Under Medium-to-Long-Term Future Climate Scenarios.
{"title":"Simulating Habitat Suitability Changes of Threadfin Porgy (<i>Evynnis cardinalis</i>) in the Northern South China Sea Using Ensemble Models Under Medium-to-Long-Term Future Climate Scenarios.","authors":"Junyi Zhang, Jiajun Li, Yancong Cai, Kui Zhang, Youwei Xu, Zuozhi Chen, Shannan Xu","doi":"10.3390/biology14030236","DOIUrl":null,"url":null,"abstract":"<p><p>The impact of global warming on fish distribution is a key factor in fishery management and sustainable development. However, limited knowledge exists regarding the influence of environmental factors on the distribution of <i>Evynnis cardinalis</i> under climate change. This study addresses this gap by predicting the species distribution under current conditions and three future climate scenarios (SSP126, SSP370, and SSP585) using five individual models and four ensemble models. The results demonstrate that the ensemble models outperform the single models, with majority voting (EMca) achieving the highest accuracy (ROC = 0.97, TSS = 0.85). Bathymetry (BM) and the sea surface height (SSH) are the primary factors influencing the distribution. The predictions indicate that the currently suitable habitats of <i>E. cardinalis</i> are primarily located in the Beibu Gulf region of the northern South China Sea. Under future climate scenarios, suitable habitat areas are expected to expand to higher latitudes and deeper waters, though highly suitable habitats in the western Guangdong coastal waters, western Beibu Gulf, and southwestern offshore waters of Hainan Island will significantly decrease.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 3","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939691/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology14030236","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The impact of global warming on fish distribution is a key factor in fishery management and sustainable development. However, limited knowledge exists regarding the influence of environmental factors on the distribution of Evynnis cardinalis under climate change. This study addresses this gap by predicting the species distribution under current conditions and three future climate scenarios (SSP126, SSP370, and SSP585) using five individual models and four ensemble models. The results demonstrate that the ensemble models outperform the single models, with majority voting (EMca) achieving the highest accuracy (ROC = 0.97, TSS = 0.85). Bathymetry (BM) and the sea surface height (SSH) are the primary factors influencing the distribution. The predictions indicate that the currently suitable habitats of E. cardinalis are primarily located in the Beibu Gulf region of the northern South China Sea. Under future climate scenarios, suitable habitat areas are expected to expand to higher latitudes and deeper waters, though highly suitable habitats in the western Guangdong coastal waters, western Beibu Gulf, and southwestern offshore waters of Hainan Island will significantly decrease.
期刊介绍:
Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.