{"title":"Dynamic Plasmonic Coupling in Gold Nanosphere Oligomers: Mechanically Tuned Red and Blue Shifts for SERS/SEF.","authors":"István Tóth, Cosmin Farcău","doi":"10.3390/bios15030181","DOIUrl":null,"url":null,"abstract":"<p><p>Controlling the surface plasmon resonances of metal nanostructures is crucial for advancing numerous high-sensitivity optical (bio)sensing applications. Furthermore, dynamically adjusting these resonances enables real-time tuning of the spectrum of enhanced electromagnetic fields in the near field, thereby regulating the optical interactions between molecules and the metal surface. In this study, we investigate the plasmonic behavior of linear oligomers composed of gold nanospheres using finite-difference time-domain electromagnetic simulations. The extinction spectra of linear arrangements such as dimers, trimers, and quadrumers are obtained for different sphere sizes, interparticle gaps, and polarization of the incident light. In view of (bio)sensing applications based on plasmon-enhanced optical spectroscopy such as surface-enhanced Raman/fluorescence (SERS/SEF), the sensitivity of various coupled plasmon modes to the variation of the interparticle gap is evaluated. The achievement of both red-shifting and blue-shifting plasmon modes offers ways to mechanically control the optical response of the linear oligomers in real-time and design new optical sensing protocols. Based on these findings, both an approach for trapping molecules into SERS hotspots and an approach for dual-mode SERS/SEF using a single excitation wavelength are proposed, contributing to the future development of (bio)sensing protocols.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 3","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940356/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15030181","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Controlling the surface plasmon resonances of metal nanostructures is crucial for advancing numerous high-sensitivity optical (bio)sensing applications. Furthermore, dynamically adjusting these resonances enables real-time tuning of the spectrum of enhanced electromagnetic fields in the near field, thereby regulating the optical interactions between molecules and the metal surface. In this study, we investigate the plasmonic behavior of linear oligomers composed of gold nanospheres using finite-difference time-domain electromagnetic simulations. The extinction spectra of linear arrangements such as dimers, trimers, and quadrumers are obtained for different sphere sizes, interparticle gaps, and polarization of the incident light. In view of (bio)sensing applications based on plasmon-enhanced optical spectroscopy such as surface-enhanced Raman/fluorescence (SERS/SEF), the sensitivity of various coupled plasmon modes to the variation of the interparticle gap is evaluated. The achievement of both red-shifting and blue-shifting plasmon modes offers ways to mechanically control the optical response of the linear oligomers in real-time and design new optical sensing protocols. Based on these findings, both an approach for trapping molecules into SERS hotspots and an approach for dual-mode SERS/SEF using a single excitation wavelength are proposed, contributing to the future development of (bio)sensing protocols.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.