Towards Rapid and Low-Cost Stroke Detection Using SERS and Machine Learning.

IF 4.9 3区 工程技术 Q1 CHEMISTRY, ANALYTICAL
Cristina Freitas, João Eleutério, Gabriela Soares, Maria Enea, Daniela Nunes, Elvira Fortunato, Rodrigo Martins, Hugo Águas, Eulália Pereira, Helena L A Vieira, Lúcio Studer Ferreira, Ricardo Franco
{"title":"Towards Rapid and Low-Cost Stroke Detection Using SERS and Machine Learning.","authors":"Cristina Freitas, João Eleutério, Gabriela Soares, Maria Enea, Daniela Nunes, Elvira Fortunato, Rodrigo Martins, Hugo Águas, Eulália Pereira, Helena L A Vieira, Lúcio Studer Ferreira, Ricardo Franco","doi":"10.3390/bios15030136","DOIUrl":null,"url":null,"abstract":"<p><p>Stroke affects approximately 12 million individuals annually, necessitating swift diagnosis to avert fatal outcomes. Current hospital imaging protocols often delay treatment, underscoring the need for portable diagnostic solutions. We have investigated silver nanostars (AgNS) incubated with human plasma, deposited on a simple aluminum foil substrate, and utilizing Surface-Enhanced Raman Spectroscopy (SERS) combined with machine learning (ML) to provide a proof-of-concept for rapid differentiation of stroke types. These are the seminal steps for the development of low-cost pre-hospital diagnostics at point-of-care, with potential for improving patient outcomes. The proposed SERS assay aims to classify plasma from stroke patients, differentiating hemorrhagic from ischemic stroke. Silver nanostars were incubated with plasma and spiked with glial fibrillary acidic protein (GFAP), a biomarker elevated in hemorrhagic stroke. SERS spectra were analyzed using ML to distinguish between hemorrhagic and ischemic stroke, mimicked by different concentrations of GFAP. Key innovations include optimized AgNS-plasma incubates formation, controlled plasma-to-AgNS ratios, and a low-cost aluminum foil substrate, enabling results within 15 min. Differential analysis revealed stroke-specific protein profiles, while ML improved classification accuracy through ensemble modeling and feature engineering. The integrated ML model achieved rapid and precise stroke predictions within seconds, demonstrating the assay's potential for immediate clinical decision-making.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 3","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940671/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15030136","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Stroke affects approximately 12 million individuals annually, necessitating swift diagnosis to avert fatal outcomes. Current hospital imaging protocols often delay treatment, underscoring the need for portable diagnostic solutions. We have investigated silver nanostars (AgNS) incubated with human plasma, deposited on a simple aluminum foil substrate, and utilizing Surface-Enhanced Raman Spectroscopy (SERS) combined with machine learning (ML) to provide a proof-of-concept for rapid differentiation of stroke types. These are the seminal steps for the development of low-cost pre-hospital diagnostics at point-of-care, with potential for improving patient outcomes. The proposed SERS assay aims to classify plasma from stroke patients, differentiating hemorrhagic from ischemic stroke. Silver nanostars were incubated with plasma and spiked with glial fibrillary acidic protein (GFAP), a biomarker elevated in hemorrhagic stroke. SERS spectra were analyzed using ML to distinguish between hemorrhagic and ischemic stroke, mimicked by different concentrations of GFAP. Key innovations include optimized AgNS-plasma incubates formation, controlled plasma-to-AgNS ratios, and a low-cost aluminum foil substrate, enabling results within 15 min. Differential analysis revealed stroke-specific protein profiles, while ML improved classification accuracy through ensemble modeling and feature engineering. The integrated ML model achieved rapid and precise stroke predictions within seconds, demonstrating the assay's potential for immediate clinical decision-making.

使用SERS和机器学习实现快速和低成本的脑卒中检测。
中风每年影响约1200万人,需要迅速诊断以避免致命后果。目前的医院成像方案往往延误治疗,强调需要便携式诊断解决方案。我们研究了银纳米星(AgNS)与人血浆一起培养,沉积在简单的铝箔衬底上,并利用表面增强拉曼光谱(SERS)结合机器学习(ML)来提供快速区分中风类型的概念验证。这些是在医疗点发展低成本院前诊断的开创性步骤,具有改善患者预后的潜力。拟议的SERS检测旨在对卒中患者的血浆进行分类,以区分出血性卒中和缺血性卒中。银纳米星与血浆一起孵育,并加入胶质纤维酸性蛋白(GFAP),这是出血性中风的一种生物标志物。用不同浓度的GFAP模拟出血性和缺血性脑卒中,用ML分析SERS谱。关键的创新包括优化agns -等离子培养形成,控制等离子体与agns的比例,以及低成本的铝箔衬底,可以在15分钟内获得结果。差异分析揭示了中风特异性蛋白质谱,而ML通过集成建模和特征工程提高了分类精度。集成的ML模型在几秒钟内实现了快速和精确的中风预测,证明了该分析在即时临床决策方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biosensors-Basel
Biosensors-Basel Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍: Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信