Mandibular-Derived Monocytes from 1-Year-Old Mice Have Enhanced Osteoclast Differentiation and Differentially Regulated Gene Expression Compared to Femur-Derived Monocytes.

IF 3.6 3区 生物学 Q1 BIOLOGY
Emilyn D Asinas, Rachel Clark, Jadyn Nelson, Juan E Abrahante Llorens, Kim Mansky, Amy Tasca
{"title":"Mandibular-Derived Monocytes from 1-Year-Old Mice Have Enhanced Osteoclast Differentiation and Differentially Regulated Gene Expression Compared to Femur-Derived Monocytes.","authors":"Emilyn D Asinas, Rachel Clark, Jadyn Nelson, Juan E Abrahante Llorens, Kim Mansky, Amy Tasca","doi":"10.3390/biology14030273","DOIUrl":null,"url":null,"abstract":"<p><p>It is well established that both men and women lose bone as they age. While recent studies suggest unique molecular signatures of mineral-resorbing cells at different anatomical locations, most studies focus on long bones, and little is known about craniofacial osteoclasts, especially during the aging process. To determine differences between osteoclasts at different skeletal sites, we analyzed the differentiation potential, demineralization activity, and gene expression of osteoclast precursors from 1-year-old male and female C57Bl/6J mice. In our study, we determined that mandibular-derived osteoclasts were larger in size compared to those in the femur but were significantly fewer in number. However, femur-derived osteoclasts demineralized larger and more numerous areas of a calcium phosphate surface compared to mandibular-derived osteoclasts. Bulk RNA sequencing demonstrated that the mandibular-derived monocytes were enriched for genes in the WNT signaling pathway, biomineralization, and osteogenesis pathways, while femur-derived monocytes were enriched for genes in the mitochondrial respiratory complex I. Overall, our data suggest that there are different mechanisms that regulate osteoclasts from different skeletal sites as we age. This information may help to guide the design of treatments to prevent aging-induced bone loss.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 3","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940643/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology14030273","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

It is well established that both men and women lose bone as they age. While recent studies suggest unique molecular signatures of mineral-resorbing cells at different anatomical locations, most studies focus on long bones, and little is known about craniofacial osteoclasts, especially during the aging process. To determine differences between osteoclasts at different skeletal sites, we analyzed the differentiation potential, demineralization activity, and gene expression of osteoclast precursors from 1-year-old male and female C57Bl/6J mice. In our study, we determined that mandibular-derived osteoclasts were larger in size compared to those in the femur but were significantly fewer in number. However, femur-derived osteoclasts demineralized larger and more numerous areas of a calcium phosphate surface compared to mandibular-derived osteoclasts. Bulk RNA sequencing demonstrated that the mandibular-derived monocytes were enriched for genes in the WNT signaling pathway, biomineralization, and osteogenesis pathways, while femur-derived monocytes were enriched for genes in the mitochondrial respiratory complex I. Overall, our data suggest that there are different mechanisms that regulate osteoclasts from different skeletal sites as we age. This information may help to guide the design of treatments to prevent aging-induced bone loss.

与股骨来源的单核细胞相比,1岁小鼠下颌来源的单核细胞具有增强的破骨细胞分化和差异调节的基因表达。
众所周知,男人和女人都会随着年龄的增长而骨质流失。虽然最近的研究表明矿物质吸收细胞在不同解剖位置具有独特的分子特征,但大多数研究都集中在长骨上,对颅面破骨细胞知之甚少,特别是在衰老过程中。为了确定不同骨骼部位破骨细胞的差异,我们分析了1岁雄性和雌性C57Bl/6J小鼠的破骨细胞前体的分化潜力、脱矿活性和基因表达。在我们的研究中,我们确定下颌骨来源的破骨细胞比股骨的大,但数量明显少。然而,与下颌骨来源的破骨细胞相比,股骨来源的破骨细胞在磷酸钙表面脱矿的面积更大,数量更多。大量RNA测序表明,下颌来源的单核细胞富含WNT信号通路、生物矿化和成骨通路中的基因,而股骨来源的单核细胞则富含线粒体呼吸复合体中的基因。总的来说,我们的数据表明,随着年龄的增长,来自不同骨骼部位的破骨细胞有不同的调节机制。这一信息可能有助于指导治疗的设计,以防止老化引起的骨质流失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biology-Basel
Biology-Basel Biological Science-Biological Science
CiteScore
5.70
自引率
4.80%
发文量
1618
审稿时长
11 weeks
期刊介绍: Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信