Mandibular-Derived Monocytes from 1-Year-Old Mice Have Enhanced Osteoclast Differentiation and Differentially Regulated Gene Expression Compared to Femur-Derived Monocytes.
Emilyn D Asinas, Rachel Clark, Jadyn Nelson, Juan E Abrahante Llorens, Kim Mansky, Amy Tasca
{"title":"Mandibular-Derived Monocytes from 1-Year-Old Mice Have Enhanced Osteoclast Differentiation and Differentially Regulated Gene Expression Compared to Femur-Derived Monocytes.","authors":"Emilyn D Asinas, Rachel Clark, Jadyn Nelson, Juan E Abrahante Llorens, Kim Mansky, Amy Tasca","doi":"10.3390/biology14030273","DOIUrl":null,"url":null,"abstract":"<p><p>It is well established that both men and women lose bone as they age. While recent studies suggest unique molecular signatures of mineral-resorbing cells at different anatomical locations, most studies focus on long bones, and little is known about craniofacial osteoclasts, especially during the aging process. To determine differences between osteoclasts at different skeletal sites, we analyzed the differentiation potential, demineralization activity, and gene expression of osteoclast precursors from 1-year-old male and female C57Bl/6J mice. In our study, we determined that mandibular-derived osteoclasts were larger in size compared to those in the femur but were significantly fewer in number. However, femur-derived osteoclasts demineralized larger and more numerous areas of a calcium phosphate surface compared to mandibular-derived osteoclasts. Bulk RNA sequencing demonstrated that the mandibular-derived monocytes were enriched for genes in the WNT signaling pathway, biomineralization, and osteogenesis pathways, while femur-derived monocytes were enriched for genes in the mitochondrial respiratory complex I. Overall, our data suggest that there are different mechanisms that regulate osteoclasts from different skeletal sites as we age. This information may help to guide the design of treatments to prevent aging-induced bone loss.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 3","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940643/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology14030273","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
It is well established that both men and women lose bone as they age. While recent studies suggest unique molecular signatures of mineral-resorbing cells at different anatomical locations, most studies focus on long bones, and little is known about craniofacial osteoclasts, especially during the aging process. To determine differences between osteoclasts at different skeletal sites, we analyzed the differentiation potential, demineralization activity, and gene expression of osteoclast precursors from 1-year-old male and female C57Bl/6J mice. In our study, we determined that mandibular-derived osteoclasts were larger in size compared to those in the femur but were significantly fewer in number. However, femur-derived osteoclasts demineralized larger and more numerous areas of a calcium phosphate surface compared to mandibular-derived osteoclasts. Bulk RNA sequencing demonstrated that the mandibular-derived monocytes were enriched for genes in the WNT signaling pathway, biomineralization, and osteogenesis pathways, while femur-derived monocytes were enriched for genes in the mitochondrial respiratory complex I. Overall, our data suggest that there are different mechanisms that regulate osteoclasts from different skeletal sites as we age. This information may help to guide the design of treatments to prevent aging-induced bone loss.
期刊介绍:
Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.