{"title":"Copper Hexacyanoferrates Obtained via Flavocytochrome <i>b</i><sub>2</sub> Assistance: Characterization and Application.","authors":"Galina Gayda, Olha Demkiv, Nataliya Stasyuk, Halyna Klepach, Roman Serkiz, Faina Nakonechny, Mykhailo Gonchar, Marina Nisnevitch","doi":"10.3390/bios15030157","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial enzymes or nanozymes (NZs) are gaining significant attention in biotechnology due to their stability and cost-effectiveness. NZs can offer several advantages over natural enzymes, such as enhanced stability under harsh conditions, longer shelf life, and reduced production costs. The booming interest in NZs is likely to continue as their potential applications expand. In our previous studies, we reported the \"green\" synthesis of copper hexacyanoferrate (gCuHCF) using the oxidoreductase flavocytochrome <i>b</i><sub>2</sub> (Fc<i>b</i><sub>2</sub>). Organic-inorganic micro-nanoparticles were characterized in detail, including their structure, composition, catalytic activity, and electron-mediator properties. An SEM analysis revealed that gCuHCF possesses a flower-like structure well-suited for concentrating and stabilizing Fc<i>b</i><sub>2</sub>. As an effective peroxidase (PO) mimic, gCuHCF has been successfully employed for H<sub>2</sub>O<sub>2</sub> detection in amperometric sensors and in several oxidase-based biosensors. In the current study, we demonstrated the uniqueness of gCuHCF that lies in its multifunctionality, serving as a PO mimic, a chemosensor for ammonium ions, a biosensor for L-lactate, and exhibiting perovskite-like properties. This exceptional ability of gCuHCF to enhance fluorescence under blue light irradiation is being reported for the first time. Using gCuHCF as a PO-like NZ, novel oxidase-based sensors were developed, including an optical biosensor for L-arginine analysis and electrochemical biosensors for methanol and glycerol determination. Thus, gCuHCF, synthesized via Fc<i>b</i><sub>2</sub>, presents a promising platform for the development of amperometric and optical biosensors, bioreactors, biofuel cells, solar cells, and other advanced devices. The innovative approach of utilizing biocatalysts for nanoparticle synthesis highlights a groundbreaking direction in materials science and biotechnology.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 3","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940147/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15030157","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Artificial enzymes or nanozymes (NZs) are gaining significant attention in biotechnology due to their stability and cost-effectiveness. NZs can offer several advantages over natural enzymes, such as enhanced stability under harsh conditions, longer shelf life, and reduced production costs. The booming interest in NZs is likely to continue as their potential applications expand. In our previous studies, we reported the "green" synthesis of copper hexacyanoferrate (gCuHCF) using the oxidoreductase flavocytochrome b2 (Fcb2). Organic-inorganic micro-nanoparticles were characterized in detail, including their structure, composition, catalytic activity, and electron-mediator properties. An SEM analysis revealed that gCuHCF possesses a flower-like structure well-suited for concentrating and stabilizing Fcb2. As an effective peroxidase (PO) mimic, gCuHCF has been successfully employed for H2O2 detection in amperometric sensors and in several oxidase-based biosensors. In the current study, we demonstrated the uniqueness of gCuHCF that lies in its multifunctionality, serving as a PO mimic, a chemosensor for ammonium ions, a biosensor for L-lactate, and exhibiting perovskite-like properties. This exceptional ability of gCuHCF to enhance fluorescence under blue light irradiation is being reported for the first time. Using gCuHCF as a PO-like NZ, novel oxidase-based sensors were developed, including an optical biosensor for L-arginine analysis and electrochemical biosensors for methanol and glycerol determination. Thus, gCuHCF, synthesized via Fcb2, presents a promising platform for the development of amperometric and optical biosensors, bioreactors, biofuel cells, solar cells, and other advanced devices. The innovative approach of utilizing biocatalysts for nanoparticle synthesis highlights a groundbreaking direction in materials science and biotechnology.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.