Wenkai Li, Zhihao Xu, Qiyi He, Junkang Pan, Yijia Zhang, El-Sayed A El-Sheikh, Bruce D Hammock, Dongyang Li
{"title":"Nanobody-Based Immunoassays for the Detection of Food Hazards-A Review.","authors":"Wenkai Li, Zhihao Xu, Qiyi He, Junkang Pan, Yijia Zhang, El-Sayed A El-Sheikh, Bruce D Hammock, Dongyang Li","doi":"10.3390/bios15030183","DOIUrl":null,"url":null,"abstract":"<p><p>Food safety remains a significant global challenge that affects human health. Various hazards, including microbiological and chemical threats, can compromise food safety throughout the supply chain. To address food safety issues and ensure public health, it is necessary to adopt rapid, accurate, and highly specific detection methods. Immunoassays are considered to be an effective method for the detection of highly sensitive biochemical indicators and provide an efficient platform for the identification of food hazards. In immunoassays, antibodies function as the primary recognition elements. Nanobodies have significant potential as valuable biomolecules in diagnostic applications. Their distinctive physicochemical and structural characteristics make them excellent candidates for the development of reliable diagnostic assays, and as promising alternatives to monoclonal and polyclonal antibodies. Herein, we summarize a comprehensive overview of the status and prospects of nanobody-based immunoassays in ensuring food safety. First, we begin with a historical perspective on the development of nanobodies and their unique characteristics. Subsequently, we explore the definitions and boundaries of immunoassays and immunosensors, before discussing the potential applications of nanobody-based immunoassays in food safety testing that have emerged over the past five years, and follow the different immunoassays, highlighting their advantages over traditional detection methods. Finally, the directions and challenges of nanobody-based immunoassays in food safety are discussed. Due to their remarkable sensitivity, specificity and versatility, nanobody-based immunoassays hold great promise in revolutionizing food safety testing and ensuring public health and well-being.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 3","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939871/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15030183","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Food safety remains a significant global challenge that affects human health. Various hazards, including microbiological and chemical threats, can compromise food safety throughout the supply chain. To address food safety issues and ensure public health, it is necessary to adopt rapid, accurate, and highly specific detection methods. Immunoassays are considered to be an effective method for the detection of highly sensitive biochemical indicators and provide an efficient platform for the identification of food hazards. In immunoassays, antibodies function as the primary recognition elements. Nanobodies have significant potential as valuable biomolecules in diagnostic applications. Their distinctive physicochemical and structural characteristics make them excellent candidates for the development of reliable diagnostic assays, and as promising alternatives to monoclonal and polyclonal antibodies. Herein, we summarize a comprehensive overview of the status and prospects of nanobody-based immunoassays in ensuring food safety. First, we begin with a historical perspective on the development of nanobodies and their unique characteristics. Subsequently, we explore the definitions and boundaries of immunoassays and immunosensors, before discussing the potential applications of nanobody-based immunoassays in food safety testing that have emerged over the past five years, and follow the different immunoassays, highlighting their advantages over traditional detection methods. Finally, the directions and challenges of nanobody-based immunoassays in food safety are discussed. Due to their remarkable sensitivity, specificity and versatility, nanobody-based immunoassays hold great promise in revolutionizing food safety testing and ensuring public health and well-being.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.