Meimei Zeng, Xinru Wang, Zifeng Tan, Wenyan Guo, Yan Deng, Song Li, Libo Nie, Nongyue He, Zhu Chen
{"title":"A Novel Rapid Detection Method for <i>Mycobacterium tuberculosis</i> Based on Scattering-Light Turbidity Using Loop-Mediated Isothermal Amplification.","authors":"Meimei Zeng, Xinru Wang, Zifeng Tan, Wenyan Guo, Yan Deng, Song Li, Libo Nie, Nongyue He, Zhu Chen","doi":"10.3390/bios15030162","DOIUrl":null,"url":null,"abstract":"<p><p>The accurate detection of <i>Mycobacterium tuberculosis</i> (MTB) is a pressing challenge in the precise prevention and control of tuberculosis. Currently, the efficiency and accuracy of drug resistance detection for MTB are low, and cross-contamination is common, making it inadequate for clinical needs. This study developed a rapid nucleic acid detection method for MTB based on scattering loop-mediated isothermal amplification (LAMP). Specific primers for the MTB-specific gene (<i>Ag85B</i>) were designed, and the LAMP reaction system was optimized using a self-developed scattering LAMP turbidimeter. Experimental results showed that the optimal reaction system included 1.5 µL of 100 mmol/L magnesium ions, 3.5 µL of 10 mmol/L dNTPs, 6 µL of 1.6 mol/L betaine, and a reaction temperature of 65 °C. The minimum detection limit was 12.40 ng/L, with the fastest detection time being approximately 10 min. The reaction exhibited good specificity, with no amplification bands for other pathogens. Twenty culture-positive samples and twenty culture-negative samples were tested in parallel; the accuracy of the positive group was 100%, the detection time was (24.9 ± 13 min), and there was no negative detection. This method features high detection efficiency, low cost, high accuracy, and effectively reduces cross-contamination, providing a new technology for the rapid clinical detection of MTB.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 3","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939914/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15030162","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The accurate detection of Mycobacterium tuberculosis (MTB) is a pressing challenge in the precise prevention and control of tuberculosis. Currently, the efficiency and accuracy of drug resistance detection for MTB are low, and cross-contamination is common, making it inadequate for clinical needs. This study developed a rapid nucleic acid detection method for MTB based on scattering loop-mediated isothermal amplification (LAMP). Specific primers for the MTB-specific gene (Ag85B) were designed, and the LAMP reaction system was optimized using a self-developed scattering LAMP turbidimeter. Experimental results showed that the optimal reaction system included 1.5 µL of 100 mmol/L magnesium ions, 3.5 µL of 10 mmol/L dNTPs, 6 µL of 1.6 mol/L betaine, and a reaction temperature of 65 °C. The minimum detection limit was 12.40 ng/L, with the fastest detection time being approximately 10 min. The reaction exhibited good specificity, with no amplification bands for other pathogens. Twenty culture-positive samples and twenty culture-negative samples were tested in parallel; the accuracy of the positive group was 100%, the detection time was (24.9 ± 13 min), and there was no negative detection. This method features high detection efficiency, low cost, high accuracy, and effectively reduces cross-contamination, providing a new technology for the rapid clinical detection of MTB.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.