A New Chitosan-Modified Paper-Based SERS Glucose Sensor with Enhanced Reproducibility, Stability, and Sensitivity for Non-Enzymatic Label-Free Detection.

IF 4.9 3区 工程技术 Q1 CHEMISTRY, ANALYTICAL
Rashida Akter, Toeun Kim, Jong Seob Choi, Hongki Kim
{"title":"A New Chitosan-Modified Paper-Based SERS Glucose Sensor with Enhanced Reproducibility, Stability, and Sensitivity for Non-Enzymatic Label-Free Detection.","authors":"Rashida Akter, Toeun Kim, Jong Seob Choi, Hongki Kim","doi":"10.3390/bios15030153","DOIUrl":null,"url":null,"abstract":"<p><p>We have fabricated a new highly reproducible, stable, and sensitive cellulose paper-based Surfaced-enhanced Raman scattering (SERS) sensor substrate for non-enzymatic label-free glucose detection. To enhance reproducibility, stability, and sensitivity, the cellulose paper (CP) substrate has been modified with a naturally derived biocompatible polymer, chitosan (CS), followed by depositing enormous amount of plasmonic silver nanoparticles (AgNPs) on CP/CS and finally forming a self-assembling monolayer of 4-mercaptophenyl boronic acid (MPBA) on CP/CS/AgNPs (CP/CS/AgNPs/MPBA). The SERS sensor substrate is characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX), Fourier transform infrared (FT-IR), and X-ray diffraction (XRD) spectroscopy techniques. The glucose sensing is achieved by monitoring the SERS intensity of C-S and B-O stretching vibrations at 1072 cm<sup>-1</sup> in MPBA, which is gradually increased with increasing concentration of glucose due to the increasing orientation change of MPBA on AgNPs. The results show that the proposed glucose paper-based SERS sensor exhibits a high analytical enhancement factor (AEF) (3.4 × 10<sup>7</sup>), enhanced reproducibility (<7%), improved stability (>5 weeks), excellent selectivity towards other metabolic compounds, and high sensitivity with a limit of detection (LOD) of 0.74 mM and a linear dynamic range between 1.0 and 7.0 mM. The practical application of this SERS sensor is examined in real spiked and non-spiked human blood serum samples for the detection of glucose, and satisfactory recovery results have been obtained, demonstrating the potentiality of the present paper-based SERS sensor for non-enzymatic label-free glucose detection in real biological samples.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 3","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940450/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15030153","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We have fabricated a new highly reproducible, stable, and sensitive cellulose paper-based Surfaced-enhanced Raman scattering (SERS) sensor substrate for non-enzymatic label-free glucose detection. To enhance reproducibility, stability, and sensitivity, the cellulose paper (CP) substrate has been modified with a naturally derived biocompatible polymer, chitosan (CS), followed by depositing enormous amount of plasmonic silver nanoparticles (AgNPs) on CP/CS and finally forming a self-assembling monolayer of 4-mercaptophenyl boronic acid (MPBA) on CP/CS/AgNPs (CP/CS/AgNPs/MPBA). The SERS sensor substrate is characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX), Fourier transform infrared (FT-IR), and X-ray diffraction (XRD) spectroscopy techniques. The glucose sensing is achieved by monitoring the SERS intensity of C-S and B-O stretching vibrations at 1072 cm-1 in MPBA, which is gradually increased with increasing concentration of glucose due to the increasing orientation change of MPBA on AgNPs. The results show that the proposed glucose paper-based SERS sensor exhibits a high analytical enhancement factor (AEF) (3.4 × 107), enhanced reproducibility (<7%), improved stability (>5 weeks), excellent selectivity towards other metabolic compounds, and high sensitivity with a limit of detection (LOD) of 0.74 mM and a linear dynamic range between 1.0 and 7.0 mM. The practical application of this SERS sensor is examined in real spiked and non-spiked human blood serum samples for the detection of glucose, and satisfactory recovery results have been obtained, demonstrating the potentiality of the present paper-based SERS sensor for non-enzymatic label-free glucose detection in real biological samples.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biosensors-Basel
Biosensors-Basel Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍: Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信