Peikai Zhang, David E Williams, Logan Stephens, Robert Helps, Irene Patricia Shamini Pushparajah, Jadranka Travas-Sejdic, Marion Wood
{"title":"Microfluidic Biosensors for the Detection of Motile Plant Zoospores.","authors":"Peikai Zhang, David E Williams, Logan Stephens, Robert Helps, Irene Patricia Shamini Pushparajah, Jadranka Travas-Sejdic, Marion Wood","doi":"10.3390/bios15030131","DOIUrl":null,"url":null,"abstract":"<p><p>Plant pathogen zoospores play a vital role in the transmission of several significant plant diseases, with their early detection being important for effective pathogen management. Current methods for pathogen detection involve labour-intensive specimen collection and laboratory testing, lacking real-time feedback capabilities. Methods that can be deployed in the field and remotely addressed are required. In this study, we have developed an innovative zoospore-sensing device by combining a microfluidic sampling system with a microfluidic cytometer and incorporating a chemotactic response as a means to selectively detect motile spores. Spores of <i>Phytophthora cactorum</i> were guided to swim up a detection channel following a gradient of attractant. They were then detected by a transient change in impedance when they passed between a pair of electrodes. Single-zoospore detection was demonstrated with signal-to-noise ratios of ~17 when a carrying flow was used and ~5.9 when the zoospores were induced to swim into the channel following the gradient of the attractants. This work provides an innovative solution for the selective, sensitive and real-time detection of motile zoospores. It has great potential to be further developed into a portable, remotely addressable, low-cost sensing system, offering an important tool for field pathogen real-time detection applications.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 3","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940179/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15030131","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Plant pathogen zoospores play a vital role in the transmission of several significant plant diseases, with their early detection being important for effective pathogen management. Current methods for pathogen detection involve labour-intensive specimen collection and laboratory testing, lacking real-time feedback capabilities. Methods that can be deployed in the field and remotely addressed are required. In this study, we have developed an innovative zoospore-sensing device by combining a microfluidic sampling system with a microfluidic cytometer and incorporating a chemotactic response as a means to selectively detect motile spores. Spores of Phytophthora cactorum were guided to swim up a detection channel following a gradient of attractant. They were then detected by a transient change in impedance when they passed between a pair of electrodes. Single-zoospore detection was demonstrated with signal-to-noise ratios of ~17 when a carrying flow was used and ~5.9 when the zoospores were induced to swim into the channel following the gradient of the attractants. This work provides an innovative solution for the selective, sensitive and real-time detection of motile zoospores. It has great potential to be further developed into a portable, remotely addressable, low-cost sensing system, offering an important tool for field pathogen real-time detection applications.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.