Low-Cost, Open-Source, High-Precision Pressure Controller for Multi-Channel Microfluidics.

IF 4.9 3区 工程技术 Q1 CHEMISTRY, ANALYTICAL
Mart Ernits, Olavi Reinsalu, Andreas Kyritsakis, Veikko Linko, Veronika Zadin
{"title":"Low-Cost, Open-Source, High-Precision Pressure Controller for Multi-Channel Microfluidics.","authors":"Mart Ernits, Olavi Reinsalu, Andreas Kyritsakis, Veikko Linko, Veronika Zadin","doi":"10.3390/bios15030154","DOIUrl":null,"url":null,"abstract":"<p><p>Microfluidics is a technology that manipulates liquids on the scales ranging from microliters to femtoliters. Such low volumes require precise control over pressures that drive their flow into the microfluidic chips. This article describes a custom-built pressure controller for driving microfluidic chips. The pressure controller features piezoelectrically controlled pressure regulation valves. As an open-source system, it offers high customizability and allows users to modify almost every aspect. The cost is roughly a third of what similar, alternative, commercially available piezoelectrically controlled pressure regulators could be purchased for. The measured output pressure values of the device vary less than 0.7% from the device's reported pressure values when the requested pressure is between -380 and 380 mbar. Importantly, the output pressure the device creates fluctuates only ±0.2 mbar when the pressure is cycled between 10 and 500 mbar. The pressure reading accuracy and stability validation suggest that the device is highly feasible for many advanced (low-pressure) microfluidic applications. Here, we compare the main features of our device to commercially and non-commercially available alternatives and further demonstrate the device's performance and accessibility in successful microfluidic hydrodynamic focusing (MHF)-based synthesis of large unilamellar vesicles (LUVs).</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 3","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940448/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15030154","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Microfluidics is a technology that manipulates liquids on the scales ranging from microliters to femtoliters. Such low volumes require precise control over pressures that drive their flow into the microfluidic chips. This article describes a custom-built pressure controller for driving microfluidic chips. The pressure controller features piezoelectrically controlled pressure regulation valves. As an open-source system, it offers high customizability and allows users to modify almost every aspect. The cost is roughly a third of what similar, alternative, commercially available piezoelectrically controlled pressure regulators could be purchased for. The measured output pressure values of the device vary less than 0.7% from the device's reported pressure values when the requested pressure is between -380 and 380 mbar. Importantly, the output pressure the device creates fluctuates only ±0.2 mbar when the pressure is cycled between 10 and 500 mbar. The pressure reading accuracy and stability validation suggest that the device is highly feasible for many advanced (low-pressure) microfluidic applications. Here, we compare the main features of our device to commercially and non-commercially available alternatives and further demonstrate the device's performance and accessibility in successful microfluidic hydrodynamic focusing (MHF)-based synthesis of large unilamellar vesicles (LUVs).

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biosensors-Basel
Biosensors-Basel Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍: Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信