Borja García García, María Gabriela Fernández-Manteca, Celia Gómez-Galdós, Susana Deus Álvarez, Agustín P Monteoliva, José Miguel López-Higuera, José Francisco Algorri, Alain A Ocampo-Sosa, Luis Rodríguez-Cobo, Adolfo Cobo
{"title":"Integration of Fluorescence Spectroscopy into a Photobioreactor for the Monitoring of Cyanobacteria.","authors":"Borja García García, María Gabriela Fernández-Manteca, Celia Gómez-Galdós, Susana Deus Álvarez, Agustín P Monteoliva, José Miguel López-Higuera, José Francisco Algorri, Alain A Ocampo-Sosa, Luis Rodríguez-Cobo, Adolfo Cobo","doi":"10.3390/bios15030128","DOIUrl":null,"url":null,"abstract":"<p><p>Phytoplankton are essential to aquatic ecosystems but can cause harmful algal blooms (HABs) that threaten water quality, aquatic life, and human health. Developing new devices based on spectroscopic techniques offers a promising alternative for rapid and accurate monitoring of aquatic environments. However, phytoplankton undergo various physiological changes throughout their life cycle, leading to alterations in their optical properties, such as autofluorescence. In this study, we present a modification of a low-cost photobioreactor designed to implement fluorescence spectroscopy to analyze the evolution of spectral signals during phytoplankton growth cycles. This device primarily facilitates the characterization of changes in autofluorescence, providing valuable information for the development of future spectroscopic techniques for detecting and monitoring phytoplankton. Additionally, real-time testing was performed on cyanobacterial cultures, where changes in autofluorescence were observed under different conditions. This work demonstrates a cost-effective implementation of spectroscopic techniques within a photobioreactor, offering a preliminary analysis for the future development of functional field devices for monitoring aquatic ecosystems.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 3","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940672/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15030128","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Phytoplankton are essential to aquatic ecosystems but can cause harmful algal blooms (HABs) that threaten water quality, aquatic life, and human health. Developing new devices based on spectroscopic techniques offers a promising alternative for rapid and accurate monitoring of aquatic environments. However, phytoplankton undergo various physiological changes throughout their life cycle, leading to alterations in their optical properties, such as autofluorescence. In this study, we present a modification of a low-cost photobioreactor designed to implement fluorescence spectroscopy to analyze the evolution of spectral signals during phytoplankton growth cycles. This device primarily facilitates the characterization of changes in autofluorescence, providing valuable information for the development of future spectroscopic techniques for detecting and monitoring phytoplankton. Additionally, real-time testing was performed on cyanobacterial cultures, where changes in autofluorescence were observed under different conditions. This work demonstrates a cost-effective implementation of spectroscopic techniques within a photobioreactor, offering a preliminary analysis for the future development of functional field devices for monitoring aquatic ecosystems.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.