Amplitude of Intracranial Induced Electric Fields Does Not Linearly Decrease with Age: A Computational Study of Anatomical Effects in Adults.

IF 4.9 3区 工程技术 Q1 CHEMISTRY, ANALYTICAL
Jianxu Zhang, Zilong Yan, Anshun Kang, Jian Ouyang, Lihua Ma, Xinyue Wang, Jinglong Wu, Dingjie Suo, Shintaro Funahashi, Wei Meng, Li Wang, Jian Zhang
{"title":"Amplitude of Intracranial Induced Electric Fields Does Not Linearly Decrease with Age: A Computational Study of Anatomical Effects in Adults.","authors":"Jianxu Zhang, Zilong Yan, Anshun Kang, Jian Ouyang, Lihua Ma, Xinyue Wang, Jinglong Wu, Dingjie Suo, Shintaro Funahashi, Wei Meng, Li Wang, Jian Zhang","doi":"10.3390/bios15030185","DOIUrl":null,"url":null,"abstract":"<p><p>Transcranial electrical stimulation, as a means of neural modulation, is increasingly favored by researchers. The distribution and magnitude of the electric field generated within the brain may directly affect the results of neural modulation. Therefore, it is important to clarify the change trend of the cortical electric field and the determinants of the induced electric field in the endodermis at different ages during the adult life cycle. In this study, we used SimNIBS software to perform MR image segmentation and realistic head model reconstruction on 476 individuals (aged 18 to 88 years old) and calculated the cortical electric field of four electrode montages commonly used in cognitive tasks. We divided all participants into groups by age with a span of 10 years for each group and compared the electric field distribution patterns, electric field intensities, and focalities of the cortexes and regions of interest related to cognitive tasks within groups. The degree of influence of global and local anatomical parameters on the electric field was analyzed using a stepwise regression model. The results showed that, in the cortexes and regions of interest, the variability of electric field distribution patterns was highest in adolescents (<20 years old) and elderly individuals (>80 years old). Moreover, throughout the adult lifespan, the electric field induced by transcranial electrical stimulation did not decrease linearly with age but rather presented a U-shaped pattern. In terms of the entire adult life cycle, compared with global anatomical parameters (intracranial brain tissue volume), local anatomical parameters (such as scalp or skull thickness below the electrode) have a greater impact on the amplitude of the intracranial electric field. Our research results indicated that it is necessary to consider the effects caused by different brain tissues when using transcranial electrical stimulation to modulate or treat individuals of different ages.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 3","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940117/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15030185","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Transcranial electrical stimulation, as a means of neural modulation, is increasingly favored by researchers. The distribution and magnitude of the electric field generated within the brain may directly affect the results of neural modulation. Therefore, it is important to clarify the change trend of the cortical electric field and the determinants of the induced electric field in the endodermis at different ages during the adult life cycle. In this study, we used SimNIBS software to perform MR image segmentation and realistic head model reconstruction on 476 individuals (aged 18 to 88 years old) and calculated the cortical electric field of four electrode montages commonly used in cognitive tasks. We divided all participants into groups by age with a span of 10 years for each group and compared the electric field distribution patterns, electric field intensities, and focalities of the cortexes and regions of interest related to cognitive tasks within groups. The degree of influence of global and local anatomical parameters on the electric field was analyzed using a stepwise regression model. The results showed that, in the cortexes and regions of interest, the variability of electric field distribution patterns was highest in adolescents (<20 years old) and elderly individuals (>80 years old). Moreover, throughout the adult lifespan, the electric field induced by transcranial electrical stimulation did not decrease linearly with age but rather presented a U-shaped pattern. In terms of the entire adult life cycle, compared with global anatomical parameters (intracranial brain tissue volume), local anatomical parameters (such as scalp or skull thickness below the electrode) have a greater impact on the amplitude of the intracranial electric field. Our research results indicated that it is necessary to consider the effects caused by different brain tissues when using transcranial electrical stimulation to modulate or treat individuals of different ages.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biosensors-Basel
Biosensors-Basel Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍: Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信